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The U. S. Air Force is developing satellite.-borne sensors

to enable autonomous navigation of spacecraft in the near future.

This study compares the observations from several medium-accuracy

space sensors, such as the existing telescopic space sextant, with

those of future matrix-type sensors. The large field of view of

matrix sensors will allow them to determine the earth horizon to

approximately an order of magnitude better than current infrared

sensors by observing atmospheric refraction of stellar light. This

horizon determination will give the matrix sensors an accuracy of

less than 1 km. The limiting factor in earth-horizrin determination

is the modeling of atmospheric refraction effects. For high-

accuracy requirements (ioo meters or less), the Global Positioning

System (GPS) offers the only near-term solution. A relative

navigation technique using range and doppler data is proposed for

autonomous navigation of the GPS satellites. The navigation

accuracy of this technique is evaluated by consider covariance
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analysis and by processing corrupted data through a reduced-order

onboard Sequentially Partitioned Algorithm. The algorithm is stable

and for the GPS system pro',,oes in-plane accuracy of 40 meters over

twenty days. However, out-of-plane motion is shown to be

unobservable in the GPS-to-GPS tracking mode, and errors of up to

k 1.5 km over 60 days are experienced. For this reason, a

supplemental transmitter on the ground or in a different orbit is

recommended.
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CHAPTER 1

INTRODUCTION

1.1 Autonomous Satellite Navigation History

Self-contained or autonomous navigation of spacecraft was

a desired capability almost at the very beginning of space flight.

The earliest references to space navigation discuss its necessity

for manned missions and interplanetary travel [Henry, 1963; GerstenI and Schwarzbein, 1963], but unmanned earth satellites have continued

to be tracked and controlled by worldwide tracking networks. These

networks, set up by both the United States Air Force and the

National Aeronautics and Space Administration (NASA) are complex,

expensive, redundant and require large operation and maintenance

budgets.

Studies of artificial satellite autonomous navigation

sensors and techniques have been performed since the late 1963

decade by Brogan and Lemay [1968], Gura, et al. [1971] and Lemay, et

al. [1973], but sensor development has lagged far behind the

analyses and only recently have serious moves been taken to build

and test sensors that will enable transfer of the navigation

function from the earth-based system to each active soacecraft.

NASA, driven primarily by cost coisiderations, is planning to ase

the Tracking and Data Relay Satellite System (TDRSS) as an orbital

tracking station, with data processing still to be performed on the

- 1



2

ground. The Department of Defense (DOD), however. Js more concerned

wcth vulnerability, as stated by Robert S. Cooper, head of the

Defense Advanced Research Projects Agency [Aviation Week. 1982], ana

with the overseas ground stations being the most vulnerable links in

the tracking and control system, DOD is funding spaceborne sensor

systems of varying degrees of autonomy to enable the onboard

performance of the navigation function.

Previous autonomous satellite navigation investigations

involved several different types of sensors. Lemay, et al. [1973]

thoroughly investigated the use of both known and unknown landmark

trackers, horizon scanners, satellite-to-satellite measurements of

angles, ratige and range-rate, star-horizor, sensors and space sextant

measurements. Their investigation, which was based upon state-of-

the-art sensor precision in 1973, indicated that landmark trackers

had the potential for yielding the best navigation performance.

Development of landmark trackers, however, never achieved the

potential expected of them, and optical star trackers, along with

the Global Positioning System (GPS), are the onboard navigationi

systems currently under development.

It is interesting to note that USSR interest in autonomous

navigation started somewhat parallel to but behind the United

States. Tne paper by Zybin L1969] proposes using star-planet

observations in a deterministic orbit determination scheme similar

to Gersten [1963]. On-orbit testing of space sextants occurred

4
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early in both manned space programs, Experiments were performed on

both the Gemini [Ballentine, 19671 and Skylab [Walsh and Ferrguson,

1975] spacecraft, as well as in the Soviet manned spacecraft

jNikoloev, et al., 1975].

1.2 Air Force Spacecraft Navigation Requirements

The new sensors under development promise navigation

accuracies that may be competitive with ground-based systems in

meeting most current and projected Air Force spacecraft position

;nowledge requirements. Discussions with Air Force System Program

Offices (SPO's) during the summer of 1981 led to a list of accuracy

requ!rements whose one-sigma values spanned the range from less than

10 m to ore than 37 km [Tapley and Ferguson, 1983].

To meet these requirements, some of the program riTices

are investigating the use of current sensor data, while others will

require new sensors of the type being developed. The Defense

Meteorolngical Support Program (DMSP) is tyoical of those

investigating their current sensor capabilities. The DMSP Primary

Attitude Determination System (PADS) consists of a fixed star

tracker pair, a sun sensor and earth horizon sensors. When all

sensors are Jn operation, the attitude error sigma is 36 arcsec and

the system output3 attitude errors and a unit vector pointing to the

center of the earth. This unit vector can be utilized by a

navigation filter to perform the autonomous navigation function.

Current sensor data studies have a goal of 1 nm accuracy with

-NAsI ',
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atmospheric radiance, bia3 modeling and filter design being the

areas needing improvementb. Since the program navigation

requirement is .5 nm (930 meters), improvements to the sensors or

new horizon sensors are necessary. Other programs, whose accuracy

requirements are in the 100 m-1 km range, are also candidates for

the optical star trackers being built and tested under Space

Division auspices.

Some satellite programs, however, require position

knowledge to 50 m or less and will thus necessitate the development

of extremely precise onboard measurement equipment. The GS program

is not only one of those that requires very accurate navigation

information but is the only navigation system proposed whoseI ! position accuracies meet the requirements of other high-precision

users. It's main limitation from an autonomous system viewpoint is

that it is dependent upon a global tracking system. User satellites

are thus dependent upon a navigation system that is still vulnerable

to ground system failures and outages.

The GPS Joint Program Office (JPO) has performed limited

studies on two autonomous navigation schemes, one using range and

integrated doppler measurements from other GPS vehicles via the

cro'-s-link antenna and the other involving precise horizon data from

a new optical sensor. The GPS satellite relative range study by Lu

[1981J indicates that although in-track errors grow to 30 meters,

10 meter accuracy can be maintained in the user line-of-sight
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direction for Phase I vehicles involved in active satellite-to-

satellite cracking for 14 days following one day of ground tracking.

Earth geopotential resonance terms are the largest error sources,

and improved values for C44, S44, C32 and S32 are required. The

study did not address the Phase III constellation, long-term

stability, clock variation or stability of an onboard solution

process.

The optical sensor proposed for GPS measures the earth's

horizon by atmospheric dispersion of star images, and is named SHAD

for Stellar Horizon by Atmospheric Dispersion. The current sensor

design is intended for mid-course missile guidance and is expected

to result in a position error sigma of 65 m (Quell, 1981], so it

would require approximately an order of magnitude improvement to be

used by GPS. Earth atmospheric density modeling, as discussed in

Section 2.8, is a major factor limiting the accuracy achievable by

SHAD.

1.3 Purpose of the Study

While some Air Force satellite SPO's are actively

investigating the capability of current and future onboard sensors,

several others are either independently soliciting proposals for new

sensors or are waiting for sensors to be developed to the

operational stage before making a decision on the route they will

take to satisfy autonomous navigation requirements. There is a need

to assess the capabilities of sensors now under development, match
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them to these program requirements and identify needed improvements

so that declsions can be made as to the direction future sensor

develpment should take. The purpose of this study, then, is to

assess navigation accuracies using these new sensors so they may be

matched to existing and planned satellite missions. Since some

users have requirements that can only be met by GPS, an

investigation of improved GPS autonomy is also undertaken.

The report consists of a description of the new

technology, a comparison of the two main types of optical sensors

under development: the Space Sextant and the matrix star sensor,

and an analysis of GPS autonomous navigation using satellite-to-

satellite range arid integrated doppler measurements. The GPS

section contains a relative geometry description, a description of

relevant error sources, ephemeris model selection using consider

analysis, orbit and clock simulation descriptions and analysis of a

proposed local estimation algorithm. Conclusions concerning the

various sensors are drawn ani recommendations are made.

1.4 Description of Sensors

Five of the sensors now under dev:elopment yield data which

hold high promise for current autonomous navigation applications.

These include the Space Sextant Autonomous Navigation and Attitude

Reference System (SS/ANARS), the Mulcimission Attitude Determination

and Autonomous Navigation System (MADAN) and the Digistar and

STELLAR star sensors. The measurement from each of these sensors is

I.
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based on the sensor's ability to measure accurately the angle

between a star and a near celestial body or the angle between two

stars. One additional 3ersor, the GPSPAC, uses range and/or

integrated doppler measurements from the Global Positioning System

satellites as data for the navigation function. The advertised

characteristics as determined by the design specifications for these

sensors are given in Table 1.1. Operational characteristics of each

sensor are described in further detail in the subsequent discussion.

TABLE 1.1. ADVERTISED SYSTEM CHARACTERISTICS

Type Ic Sensor Weight Power Operational
Precision Date

Space Sextant .5 arcsec 65 lbs 50 watts 1985
MADAN 2 arcsec 5U lbs 50 watts 1987
Digistar .5-2 arcsec 30-60 lbs 30-60 watts 1985 (2 arcsecj
STELLAR 1-30 aresec 40 lbs 40 watts
GPSPAC Pos: 18 m 43 lbs 45 watts 1987

Att: .020-.60 (71-2143 arcsec)

1.4.1 Space Sextant

The Space Sextant Autonomous Navigation and Attitude

Reference System is being developed by Martin-Marietta. A flight

demonstration model has been built and ground-tested, and an

operational version may be ready by 1985. The test model weighs

approximately 220 lbs and consumes 280 watts, but the operational

model proposed for the Mini-HALO program is advertised to weigh 65

lbs and consume 50 watts of power [Martin-Marietta, 1980].

X5
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The sextalt is ccmposed of two cassegrain tracking

telescopes mou;:ted on a 3 degree-of-freedom inertial platform (Fig.

1.11. -1r) che navigation mode, one telescope tracks the bright limb

QI the moon, while the other tracks stars visible to the system. A

timing wheel located between the telescopes rotates a prism at 9 rps

such that optical signals are injected into each telescope parallel

to the reielved starlight. The angle between tne two lines of sight

is then determined to < .5 arc~ec by measuring the time interval

between the optical signal reception at each telescope's detector.

1.4.2 MADAN

The Multimission Attitude Determination and Autonomous

Navigation system is a solid-state matrix star sensor being

developed by TRW (Fig. 1.2). The heart of the sensor is a matrix

charge-coupled device (CCD) developed by Hughes. The matrix

contains four arrays of 324 x 324 elements or pixels, each I mil x I

mil (25.4 pm x 25.4 pm) [TRW, 1979]. A Schmidt-Cassegrain

reflecting telescope with a 7.10 x 7.10 field of view produces an

intentionally defocused image on the array and a sensor data

processor determines the centroid of the image to approximately 5

percent of a pixel width with respect to the sensor line of sight.

Since each pixel subtends 39.4 sec, a 5 percent error gives lo < 2

arcsec. Two such sensors can be used to determine spacecraft

attitude, but the star sensor, along with its data processor, is not

capable of autonomous navigation without an earth horizon sensor.
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It may be possibit tri use the star sensor as an earth horizon sensor

by 'neasuring a star position as it is refracted by the atmosphere,

but the oLrrent design does not include the necessary software. The

use of this sensor for horizon determination is discussed further in

Section 2.4.1.

A MADAN test model is being fabricated by TRW, with bench

test results expected in 1983. An operational version could be

flown by 1987.

1.4.3 Digistar

Digistar is another solid-state matrix star sensor being

built by Ball Aerospace Systems Division (Fig. 1.3). It employs a

256 x 256 pixel charge injection device (CID) developed by the

General Electric Corporation. Each pixel element is 20 x 20 pm.

The refracting telescopi produces an image on the focal plane

matrix, and an interpolation scheme is used to arrive at an image

centroid with a precision of less than 1 percent of pixel size in a

field of view of 2.930 x 2.930. Since each pixel subtends 41

arcsec, the resulting star position precision is expected to be

about .4 arcsec. Testing of a breadboard model currently

demonstrates a lo tracking error of .8 arcsec [Ball Aerospace,

1981]. According to a Ball representative, an operational model

could fly in 1985.
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1.4 4 STELLAR

The Jet Propulsio, Laboratory (JPL) has been developing

CCD-based star sensors since 1974 [Salomon, 1981]. The project is

named STELLAR for Star Tracker for Economical Long Life Attitude

Reference. To date, two large array trackers have been developed.

The Video Inertial Pointing iVIP) tracker employs a Fairchild-

produced CCD having a 190 x 244 element array with a 1.90 x 2.50

field-of-view, 36 arcsec pixels and 2.2 arcsec resolution. This

instrument flew on a balloon payload in June 1979.

The Extended Life Attitude Control System (ELACS) tracker

uses a 380 x 488 element CCD built by Fairchild and has a 100 x 320

field-of-view. The resolution is 12 arcsec along the short axis and

30 arcsec along the long axis. Even though it is less accurate than

the VIP tracker, it allows commandable fields-of-view, so several

operating modes, such as star field mapping, star acquisition and

star tracking, are available from one instrument.

The JPL goal is to have three instruments: a wide-field

star tracker, like ELACS, a general purpose tracker and an

instrument pointing sensor with accuracies varying from 30 to 1

arcsec. According to Salomon [1981], each tracker would weigh

between 8 and 13 lb and draw 10 watts of power.

1.4.5 GPSPAC

A spaceborne Global Position System receiver (GPSPAC) is

under development by Magnavox, among others. Utilizing the GPS

41



ranging signal, position errors of 18 m (io) are expected for user

satellites below OPS altitude (20197 km) in Phase III operation.

This system is dependent upoya the GPS spacecraft launch schedule but

is expected to be operational in 1987.

' User satellite attitude can be determined from GPS-derived

interferometric information obtained by using two widely separated

antennas and a suitably modified receiver. This information is

obtained separately from the navigation data and requires additional

receiver design. Attitude determination accuracy using this

technique is only on the order of .020 to .60 [Ellis and Creswell,

1978].

1.5 Sensor Comparison

The relative advantages and disadvantages of each sensor,

from the operational point of view, can be summarized as follows:

A. Space Sextant

Advantages:

1. High-accuracy angle measurement

2. Self-gimbaled

3. Early operational date

Disadvantages:

1. Mechanical gimbals, possibly reducing reliability

2. Moon-star angle is less sensitive to orbit dynamics than
an earth-star angle.

B. Solid-state Matrix Sensor (MADAN, Digistar and STELLAR)

p'
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Advantages.

1. Smai, solid statp

2. Modular

(. ,an view several stars simultaneously

Disadvantages:

1. Fixed to spacecraft with no automatic scan capability

2. No existing comparable earth horizon sensor

3. Later operational date for a navigation system

C. GPS Receiver

Advantages: High positional accuracy

Disadvantages:

1. Dependent on ground tracking system

2. Low attitude precision

it
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CHAPTER 2

OPTICAL SENSOR NAVIGATION ACCURACIES

2.1 Introduction

Since the various instruments described in the previous

sections will provide different navigation information, corversions

must be made from sensor precision to spacecraft position error to

compare the navigation accuracies of the three types of instruments.

For the GPSPAC, simulations of the ranging system errors coupled

with GPS ephemeris and clock errors produce a user position error of

less than 18 meters during periods when at least four satellites

with acceptable geometrical displacement are visible [Fuchs, et al.,

1977]. Since earth-orbiting satellites will continuously see at

least four GPS vehicles in Phase III, this accuracy is assumed for

all users. Semi-autonomous maintenance of GPS ephemerides is

analyzed in later chapters.

The Space Sextant has been analyzed in detail by the

Martin-Marietta Corporation [1975], and a navigation accuracy of

300 meters is predicted for a .5 arcsec sensor. The matrix sensors

have not been analyzed in detail nor have the comparisons between

them and the Space Sextant been made. Such a comparison will be a

primary objective of this study. Since the expected navigation

accuracy of the Space Sextant is known, the information content of

the star-moon measurement can be compared with that of the star-

16
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earth horizon onservations produced by the matrix sensors, and the

resulting relacive accuracies will be indicative of matrix sensor

performance.

2.2 Optical Satellite Navigation Covariance Program

To compare the navigation accuracies of the two types of

optical sensors involved in this study, a computer program for

performing covariance propagation and analysis was written. This

program assumes only zero-mean Gaussian measurement errors are

present and propagate the satellite state error covariance using the

following Extended Kalman Filter (EKF) update scheme. The nonlinear

model for the system is represented by

- F(X(t),t) (2.1)

where the state vector, X(t), has components measured in an inertial

frame:

x1(t)

x2(t)

x 3(t)~~x(t) . X4t (t), -V~t )  (2.2)

x 5(t)

x6(t)



18

and where the fu.',:e furction, F(X(t),t), is defined as:

rx4(t)

I x5 (t)

x 6 (t)

' W _(jX 1 u (t) (2 3
F\.X(t),t) =3LV = + P Ct) (2.3)

-1x2 (t)
+ P (t)

yr
-Px3(t)

- + P(t)
3 zr

where

- gravitation parameter of earth - 398603.2 km3/sec2,

r - the magnitude of the satellite position vector,

r(t) + 2+ 2)1/2

P(t) is any perturbing force.

In this analysis, P(t) - 0 , and the resulting orbit is two-body;

however, the program can simulate any desired forces acting on the

spacecraft by changing the derivative subroutine.

Between planned observation times, the state is propagated

by either closed-form analytic integration for the two-body case or

by a Runge-Kutta (RK4) or Adams predictor-corrector numerical

integrator. The state error cuvarlance matrix, P, is given at the

start of the analysis as P0  at to and is propagated between

observation times by

'1

-- "
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FCt + At) - ¢(t + At,t) P(t) T(t + At,t) (2.4)

where l(t * tt) , the state transition matrix, is approximated

from a second-order Taylor series solution to

' (,,t) - A(T) 0 :t:*(~) (2.5)

where

A(,) x )

The approximate solution for O(t + At,t) is given by

Murata [1982] as[(t + At,t) - I + A(t)At + [A(t) + A2 (t)] At2  (2.6)

where

A(t) = Aft + At) - A(t) (2.7)

At each simulated observation time, tk , the covariance

matrix is updated by the contribution of the type of observation

assumed to be available at that time.

2.2.1 Measurement Model

At each measurement epoch, the covariance matrix is

updated, and symmetry is enforced by the following algorithm3:

P - (I - KH)Y (2.8)

1P To (P + PT) (2.9)
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where is defined as "replaced by."

Once the H matrix is computed at each observation epoch,

the Kalman gain, K, is given by

K - FHT(rHT + R)-1  (2.10)

where R - o2 for the sensor simulated at tk A complete

derivation of Kalman continuous-discrete update and propagation

algorithns Is given by Jazwlnski [1970], pp. 195-200.

For the purposes of the analysis conducted here, the

covarlance matrix is rotated from its original coordinate system,

the earth-centered inertial (ECI), to an Inertial coordinate system

residing at the spacecraft, aligned with the instantaneous radial,

tangential, normal (RTN) system. Figure 2.1 shows these coordinate

systems and the measurement geometry simulated. The diagonal

elements of P then form a lo error ellipsoid about the estimated

spacecraft position. If TRTN is a 3 x 3 orthogonal' TEC I

transformation matrix from ECI to RTN coordinates, then

TRTN 0 T RTN 0
IECI  L EECI  j

SRTN PECI 0 TRTN (2.11)PRT = 0 ECI 0 ECI

and the ellipsoid axes defined by the position sigmas

1/2

rrad [RTN ]

' I

-i
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1/2

o. 0o~. (2. :2)
." 112

1/2
a % PRHTN

1/2
0 nor LPRTN5 5

I/2

defines an instantaneous inertlal velocity error Icated at the

satellite but does not include terms associated with the angular
velocity and acceleration of the RTN coordinate ybtem itself.

The measurement sensitivity matrix, H , relates the

difference between the measured and computed observations,

i y - Y-Y* , using an a priori estimate of the trajectory, to the

eror in the state x = X - X*. The covariance matrix P represents

the uncertainty in the estimate of x. The structure of the

measurement se..-:Iivity matrix, H , will depend on the individual

observation types. For the cases considered, H is given by:

1/
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r measurement (tk)i , (2.1)

axw j k

2.2.1.1 Star-Horizon Geometry

For a star-horizon observation, Fig. 2.2 shows the
geometry, with vectors and angles defined as follows. Let

xi

- x2  (2.15)

[xj

and

r - I-'1

rh - ray tangent altitude(RTA) + re

= unit vector to star, defined by line-of-sight of sensor

in inertial coordinates

Then,

a - sin- r~~ (2.16)

b -cos-, (2.17)

ob - b - a (2.18)

and the first three components of the measurement matrix are
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H )2 ]-1/2 r +

, rh(

CSC b 3 ; + sec a r (2.19)

r r3

while the second three components are

H,,5 ,6 ' 0 (2.20)

2.2.1.2 Horizon Sensor Geometry

For a horizon observation, the simulated star direction is

assumed to be in the plane defined by the center of the earth, the

spacecraft and the line-of-sight of the same star sensor simulated

in the star-horizon observation. The unit vector 9 is replaced by

a unit vector pointing to the intersection of this plane and the

surface of the earth's atmosphere as given by an input tangent

height. The new value for 8 is

9:- sin(a) § - sin(ob) (2.21)sin(b) r

and the partial derivative matrix, H , is the same as aoove.

2.2.1.3 Star-Moon Geometry

A star-moon cbservation is defined as shown in Fig. 2.3,

with the observation being the acute angle between the lunar limb



26

[ - ~ -c star---

I, rm

Figure 2.3. Star-Moon Geometry



27

nearest a star and that star.

ob - cos -1  
- " - sin (2.22)

and

H123 ~ ~ ~ r L -( m)2]112 [() _ ( n2~)

\ (r)] ( r (2.23)

H4,5, 6  0 (2.24)

2.3 S.ar-Moon Sensor Performance

The space sextant uses star-moon angles for input co a

navigation filter because the earth horizon cannot be accurately

determined by current infra-red and visible sensor technologies.

Since the sextant telescopes 2an gimbal freely with respect to each

other and with respect to the spacecraft, one can normally track the

bright lunar limb while the other locks on stars visible to the

system. This allows a more precise angle measurement than is

possible with a current earth horizon sensor. In the situations of

lunar occultation by the earth or sun-moon interference, the sensor

tracks the earth horizon as a temporary replacement for the moon.

The sensor's independence of motion gives it the advantage of being

I
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able to track known targets, even when the spacecraft is unstable in

attituae and also frees the navigation solution from attitude

errors.

The space sextant type of observation was simulated by

computing the angle between unit vectors to the nearest lunar limb

and stars at ±450 from the spacecraft T unit vector in the local

horizon plane. As shown in Figure 2.4, the resulting navigation

error exhibits a large twice-per-orbit periodic effect. This is due

to the orbit-moon geometry and, for various initial moon-ascending

node angles, exhibits varying amplitudes. The case with minimum

periodic amplitude (9 = 73.4-) was then used for the star-moon

accuracy curves in the main report to maintain as much consistency

as possible in the error vs. period plots.

This twice-per-orbit fluctuation is due to the particular

simulation geometry used -- two fixed star directions relative to

the spacecraft. To more closely simulate the Space Sextant scanning

scheme, as described by Martin-Marietta [1981], another mode was

programmed in which the star unit vector was changed randomly

between 00 and 3600 in right ascension and between -900 and +900 in

declination for each consecutive simulated measurement. The results

(Fig. 2.5) show a random pattern in position error after convergence

of the filter. This random behavior would adversely affect the

consistency of results when various period orbits are considered, so

the original sensor configuration with 9 - 73.40 was retained in the
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analysis.

2.4 Star-Horizon Sensor Performance

The solid-state modular sensors (MADAN, Digistar and

STELLAR) are designed to be rigidly fixed to the spacecraft and,

therefore, cannot observe the lunar limb except when it happens to

fall in the field of view. Optical celestial navigation from a

spacecraft, however, requires the measurement of angles between a

star and a body that appears to move as the vehicle moves in its

orbit. This rules out star-star angles except for attitude

information. One sensor must observe a near celestial body and, for

earth-oriented spacecraft, the earth horizon is the only feasible

target for fixed sensors. Also, since the earth horizon appears to

move 3600 during each orbit while the moon appears to move

2 tan-'(r/Rm) (12.6 d ,g for sync orbit), the earth-star angle is

much more sensitive to orbit dynamics. Furthermore, since the earth

horizon is normally closer to the spacecraft than the moon horizon,

the earth-horizon based measurement should give a higher navigation

accuracy for angle measurements of comparable precisioi.

For near-term conventional horizon sensors, the state of

the art is about .020 [Fowler, 1981]. Figure 2.6 shows the results

obtained in the covariance analysis for both star-earth and star-

moon sensors. The covariance analysis program propagates the state

covariance matrix and updates this matrix with information obtained

from each type of observation at fixed-time intervals. The
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resulting RSS position sigma from the diagonal terms of the

covariance is plotted versus time expressed in orbits, with the

solid line representing a one-sigma error for star-horizon

measurements obtained from a 2 aresec star sensor and a .02 deg

horizon sensor. The dashed line represents the one-sigma error for

a Space Sextant measuring star-moon limb angles to a .5 arcsec

precision. For the star-earth measurement, the earth's horizon is

sensed, and for a star-moon angle, the moon's bright limb is sensed.

Two horizon sensors with .020 accuracy capability, when used with

two fixed star sensors with a precision of 2 arcsec, would provide a

navigation accuracy of 2500 meters for a satellite in a 12-hour

circular orbit. As seen in Fig. 2.6, this is more than a factor of

10 worse than that achievable by a space sextant with a precision of

* .5 arcsec. Thus, to take advantage of the improved measurement-

orbit geometry, the solid state star sensors must be coupled with

horizon sensors of at least an order of magnitude improvement:

0.0020 or 7 arcsec.

2.4.1 Star Refraction Measurement of Earth Horizon

Fortunately, the new star sensors themselves offer a means

by which earth-horizon sensing may be improved. As starlight passes

through the atmosphere, it is refracted and dispersed. The angles

of refraction and dispersion depend upon ray tangent altitude (RTA),

the point where a starlight ray is nearest to the earth's surface as

shown in Figure 2.7, and atmospheric conditions, but the measurement
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Figure 2.7. Starlight Ray Geometry
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of either of these angles offer the possibility of a more accurately

defined horizon. The Office of Naval Research is presently

investigating the feasibility of using the dispersion sensor SHAD,

for mid-course ICBM guidance, with an expected lo error of 65 meters

[Quell, 1981], while Chambers [1981] of the Aerospace Corporation

proposes measuring refraction using the unique capabilities of

MADAN. Since this sensor has a wide field of view (7.10 square), a

minimum of two stars can bb observed continuously. By measuring the

angle between two stars before and during the time one of them is

refracted by the atmosphere due to spacecraft motion, the refraction

angle inferred from this changing geometry defines the height of

starlight tangency to the atmosphere (RTA). According to Chambers,

a 3 arcsec knowledge of this refraction angle, obtained by looking

Lat two stars to a precision of 2 arcsec each, gives a tangent height

uncertainty of 150 meters for a tangent height of 25 km. Since this

uncertainty depends upon a priori knowledge of the properties of the

atmosphere and sensor and not on orbit altitude, the resulting

apparent horizon determination precision varies from 16.7 arcsec for

a 90-minute orbit to .72 arcsec for a geosynchronous orbit.

Figure 2.8 from Chambers [1981) shows that the refraction curve has

a fairly consistent slope for all models considered such that a

given refraction error produces the same tangent height error for

each curve. In addition, this tangent height error is only a

function of refraction error, and refraction error is a function of
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the cptical measurement device, not orbit altitude.

When the solid-state sensors are used as horizon sensors,

they can either be combined with other similar devices to provide

star-horizon data or they can be employed alone, with a priori

knowledge of the angular position of the stars being observed, to

give the angle between the horizon and the center of the earth.

Fig. 2.9 shows the navigation accuracies expected from two star-

horizon sensors, two horizon sensors and two star-moon sensors in a

12-hour circular orbit with the following instrument precision:

Sensor Instrument Precision (1o)

Star-horizon sensors
Star: 2 arcsec
Horizon: 3 arcsec

Horizon sensors 3 arcsec

Star-moon sensors .5 arcsec

Note that, even with a four- to six-fold decrease in observation

precision, the star-horizon and horizon sensor navigation errors are

two to seven times smaller than those predicted for the star-moon

sensor. If the horizon sensors are an order of magnitude worse

(I0 - 30 arcsec), the star-horizon and horizon sensor navigation

errors grow to 350 m and 230 m, respectively.

2.4.2 Star-Horizon Performance vs. Sensor Orientation

To determine the optimum sensor configuration for two star

sensors, the sensor bore-sight direction was first moved in azimuth
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in the local horizon plane and then in elevation for a 90-minute and

a 12-hour orbit. Figures 2.10 and 2.11 show the effect of azimuth

in the 90-minute and 12-hour orbits, while Figures 2.12 and 2.13

examine the effe6t of elevation in the two cases.

From the figures it is seen that, for high-altitude

orbits, sensors located between 450 and 500 azimuth and as low an

elevation as possible give the best results. The lowest elevation

possible coincides with the horizon sensors themselves; thus, the

horizon sensors alone produce the best navigation accuracy in the

absence of attitude errors. While the 90-minute orbit was fairly

insensitive to azimuth changes, it seems to be more sensitive to

elevation angle than does the 12-hour orbit. Interestingly, a very

high elevation star sensor gives improved performance in low orbit,

and in fact, the test program that led to PADS had a star sensor

pair mounted 600 from the local horizon, one at 00 azimuth and the

other at 1800 [Honeywell, 1973].

Since performance over the period range 90 min to 5 days

is of interest to this study, the star sensor configuration selected

for comparison with the other optical measurements in this analysis

was one with star sensors located on the spacecraft in the local

horizon plane, ± 450 from the T unit vector.

2.5 Optical Sensor Performance vs. Circular Orbit Period

Fig. 2.14 through 2.15 show the performance of the optical

sensors as a functior of altitude or period. While the star-horizon

XgY
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sensor shows an error growth with altitude due to the changing

geometry, the space sextant exhitits an almost constant error. This

is due to the distance of the moon being so much greater than the

satellite radius. The horizon sensor shows the interesting feature

of a sharp drop in position uncertainty followed by nearly constant

performance as the altitude increases. For a constant sensor error,

the navigation performance would be expected to degrade with

increasing altitude, as for the star-horizon sensor. However, the

horizon sensor's apparent precision due to a constant 150 meter

tangent height uncertainty (oh), falls rapidly at low-to-medium

altitudes and then drops more slowly as altitude increases (Fig.

2.16). Note that the increase in apparent sensor precision

parallels the navigation performance seen in Fig. 2.14b, i.e., as

altitude increases from near-earth orbits, the rapid improvement in

apparent sensor precision leads directly to corresponding

improvements in navigation accuracy. These results show that if the

earth horizon can be tracked to oh - 150 m, two horizon sensors can

provide much better navigation accuracies than the space sextant.

If the horizon detection is accurate to only 1500 m, the resulting

navigation error increases to 234-350 m for a 12-hour orbit,

depending upon the mode used (horizon only or star-horizon).

2.6 Sensor Performance on an Elliptical Orbit

Figure 2.17 shows the performance of the three measurement

types applied to a 2-hour elliptical orbit (e - .75) with sensors

•~~~~- -------m1 l I
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at ± 450 azimuth and 0O elevation. The horizon sensor must be

gimbaled, however, and the gimbal mechanism would introduce some

error in the horizon definition.

Comparing these results to Figure 2.9, it is seen that the

relative order of sensor performance stays the same when applied to

an elliptic orbit, but the error magnitude grows, especially for the

star-horizon sensor pair. This error growth could be reduced by

selecting a lower elevation sensor direction as altitude is

increased, but that would lead to a much more complicated system

unless the star and horizon sensor pair were mounted on the same

gimbaled platform. If that were the case, the relative orientation

of the two sensors would remain the same, and gimbal inaccuracies

-could probably be reduced considerably.

2.7 Comparative Sensor Performance for Circular Orbits

The results of this analysis are summarized in Table 2.1,

where the matrix sensors are operated in either the star-horizon

angle mode or as horizon sensors alone. The navigation accuracies

are representative of orbits above 300-minute period.

-Ir
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TABLE 2.1

PREDIC ZD NAVIGATION ERROR DUE TO SENSOR ERROR

Sensor Sensor Precision Navigation Error
[meters)

Space Sextant .5 150

Matrix Sensors
Star-Horizon 2 40-180

1 19-90
.5 9-45

Horizon 2 20
1 11
.5 6

It should be emphasized that only sensoi error was

considered and that tne fixed sensor's results would be degraded by

attitude errors. This is especially true for the horizon sensor,

since the vehicle-determined local vertical forms the measurement

reference. Note that the optical sensors may also form the attitude

determination sensor system, as indicated in the proposed

utilization of the space sextant. Correlation between attitude and

navigation solutions may be a problem, but since the attitude filter

requires high frequency updates while the navigation filter may

require less frequent update, the two requirements may be handled as

two separate problems as long as the navigation system is aware of

the time history of the attitude 3olution.

2.8 Refraction Errors

The largest error sources inherent in the star-earth
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horizon measurement of star refraction are the sensor itself and the

atmospheric modeling required to predict refraction angles. In

studies recently completed for the Naval Surface Weapons Center

(NSWC) by Clynch [1979 and 1981b], a ray tracing program was used to

compute refraction of a star ray passing through earth's atmosphere.

The model for refractivity was from Owens [1967] where the

refractivity, N, is a function of the refractive index,

N E 106 (n-1) (2.25)

[ but the refractive index, n, of a gas muet be determined by the

molecular density and relative polarizability. This refractive

index is obtained from the Lorentz-Lorenz equation,

n2+2 i

(2.26)

where R, and ^i are the specific refractivity and density of the

ith component. Assuming that dry, CO2-free air can be treated as

single component, equation (2.26) can be approximated by

R (2.27)
n2+2

From (2.27), it is seen that

n2  1 + 2R (2.28)

1 P

A I m in mmu ,
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Thus,

N - 10A I+ 2 R) - I (2.29)

Note that R in Eq. (2.29) is a constant for a homogenous

dry air mixture, but that density, P, is not a constant nor is it a

well-behaved function of altitude. Density Is usually modeled as an

exponential function of altitude,

-a/Hs  (2.30)

where

o a bottom altitude density

a - altitude

Hs - scale height

but this exponential model breaks down when attempting to model

largn altitude bands. To extend the range of the equation, the

altitude is broken into several altitude bands of constant

thickness. The constants in Eqs. (2.29) and (2.30), R , and H,

also vary as a function of location and of local weather conditions;

thus, location errors and delays result in errors in computed

refraction index and thus in the computed refraction angle for a

given ray altitude. The computed refraction angle, 0, in a slab is

given by a continuous form of Snell's law in the case where a slab

is defined as a region in which n has a small, constant gradient
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[Kelso, 1964]

n sin 6 - constant no sin e (2.31)

The computer program used by Clynch propagates the

starlight through the atmosphere and, by constructing a series of

slabs of constant refractive index gradient, computes the bending of

2 the ray as it moves from one slab through another. In this

analysis, the log of density vs. altitude data obtained from the

National Oceanic and Atmospheric Administration were fit with cubic

I polynomials with an average relative error of 0.5 percent. When

these models were then used to predict atmospheric density and then

RTA (Fig. 2.7), it was found that the error in RTA was approximately

proportional to the relative error in density at the ray tangent

point with a 1 percent density error producing a 100 m RTA error.

When data one to four days apart were processed, the results showed

the effect of data aging. Table 2.2 lists typical errors of Ap/p

for several one- and four-day spans in 1979. These values are

computed near the north pole, and latitudes below which density

changes of S 5 percent were observed are indicated. Winter pole

density errors are very large compared to summer, but the error

quickly drops as warmer weather approaches. Even in the worst

month, however, 5 percent error or less is observed over

approximately 60 percent of the earth's surface.

'1

I+
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TABLE 2.2

EFFECT OF ATMOSPHERIC DATA AGEING AT 20 KM ALTITUDE

Date Age (Days) Ap/p(%) Latitude

9 Jan 1 7.5 400

12 Jan 4 27.5 400

21 Jun 4 4.4 900

Clynch states that when data are aged for five days or more, they

are comparable to climatology predictions; thus, density predictions

covering the quiet 60 percent of the earth should be accurate to

approximately 5 percent.

These errors are those expected from a complex ray tracing

computer program operating with aged atmospheric data. In the

onboard navigation scenario, it is not possible to implement this

ray tracing algorithm, and a reduced order model must be used that

includes an atmosphere generated onboard with a minimum of updates.

Clynch [1981a] proposes an approximation to the ray path that

matches the actual density and density gradient only at the ray

tangent point (RTP). Altitude (a) near the RTP is approximated as a

function of distance from the RTP, (s), by

2
a - RTA --- (2.32)

2r

where
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r Re + RTA

The refraction angle 6 is then expressed as the integral over the

path length

O(RTA) f dY ds. (2.33)
- ds

The actual path length derivative de/ds is a function of conditions

in each slab, but when the actual optical path is replaced by a

straight line through the RTP and tangent to the ray there, the

2
integral becomes a Gaussian integral (containing e-x dx terms).

e 2)e(RTA) AMP e p ds2Hs  _r

1/2

-( -- [ --n~ (2.3,)

where R(A) is the specific refractivity of dry air at the

wavelength, A , of interest, and p is evaluated at the RTP.

If, in addition to the assumption that curvature of the

path takes place very near the RTP, it can also be assumed that

conditions about the RTP are stable, then data on the atmosphere at

the geometric tangent point (the geometric intersection of tangent

lines from the star and spacecraft - GTP) can be used to determine

H and e(RTA). RTA is then approximated by geometric tangent

altitude (GTA). This greatly simplifies the problem since GTA is

nowI 111 l- II II iim •i i lii I
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determined by star, earth and spacecraft positions alone. The

equation relating O(GTA) and e(RTA) is

9(RTA) = O(GTA) exp [-BO(RTA)] (2.35)

where

S[ (r )1 / (2.36)

S = distance from observer to point of ray tangency

Since Eq. (2.35) is transcendental in e(RTA), large differences in

atmospheric conditions (H. and p) between GTA and RTA would

require an iterative solution.

Testing this simplified model for O(RTA) vs. the complex

atmosphere in the ray tracing program showed a relative error of

approximately 2 percent in the GTA range 25 to 45 km. This

corresponds to an error of 2.4 to .16 arcsec in O(RTA) . These

results indicate that the contribution of atmospheric modeling to

the CCD sensor error budget is on the order of 2 arcsec plus the

error due to not having current atmospheric data. If monthly

atmospheric data are transmitted to the vehicle and if that data can

then be extrapolated to produce less than an 8 percent density

error, then the refraction model would contribute approximately

1000 m to the error in GTA.

Even a total error in density of 15 percent, giving a GTA
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error of 1500 m would result in a 12-hour orbit navigation error of

only 350 m with two star-horizon CCD sensor pairs. Lower orbits

would feel that GTA er-or more acutely, and higher orbit accuracy

would be better. Before realistic error budgets can be produced,

however, more work must be done to quantify errors in long-term

density prediction.
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CHAPTER 3

rGLOBAL POSITIONING SYSTEM

3.1 Introduction

The results of Sections 2.7 and 2.8 show that the optical

sensors being developed will produce navigation accuracies on the

order of 300 meters. Several satellite programs, however, require

errors of less than 50 m and are therefore potential GPS users if

GPS can be made less dependent on ground tracking and control. This

is the purpose of the remainder of this report -- to investigate the

feasibility of autonomous navigation of GPS vehicles using

satellite-to-satellite range and integrated doppler information in a

reasonably sized onboard navigation processor. The approach taken

is to first determine constellaton selection effects, then to

analyze filter model requirements with consider covariance

techniques and to propose an onboard filter design and evaluate its

error propagation characteristics.

3.2 GPS Constellations

The Global Positioning System is composed of a spaceborne

segment consisting of a variable number of satellites in 12-sidereai

hour orbits, a control segment consisting of a Master Control

Station (MCS), and four remote Monitor Stations (Ms) and a user

segment consisting of many different user receiver sets built by

58
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several different manufacturers. The number of satellites to be

placed In the constellation varies with congressional budget

decisions. Descriptions of the system and its several facets abound

in the literature, and an excellent collection of papers can be

found published together by the Institute of Navigation.

The number of satellites currently planned is 18, and two

different constellations have been analyzed by the Joint Program

Office (JPO) [Book, et al., 1980]. The first of these is a modified

three-plane 24-satellite configuration in which two of the eight

satellites in each plane are eliminated leaving an unsymmetric 18-

satellite constellation. This is termed the 3 x 6 configuration

since three planes of six satellites each are employed. The second

candidate constellation consists of six planes with three satellites

each in a symmetric pattern, i.e., a 6 x 3 constellation. The orbit

elements for these constellations are given in Table 3.1.

According to Book, et al., the unsymmetric 3 x 6

constellation has a geometric performance with respect to the ground

almost as good as the symmetric 6 x 3 configuration, where GPS

geometric performance is determined by examining the trace of a unit

covariance matrix of the user position error as follows [Milliken

and Zoller, 1980].

If the user receives information from at least four GPS

satellites, he can estimate his position and his clock error and the

error in these estimates. He measures a pseudo-range to each



60

satellite:

i " Pi + CAtAi + C(Atu - At (3.1)

where

Pi - pseudo-range to satellite I

P= geometric range

At i  satellite I clock offset from a common time scale
A9

At = user clock offset
U9

AtA - propagation delays, etc.

Ei random measurement noise

If AtAi is determined or adequately modeled and Atg i  known for

each satellite, then four pi measurements to four GPS vehicles

provide information to solve for user position (x,y,z) and clock

1/2

bias (CAtu). since Pi= (Xg -X)2 + (yg -Y)2 + (z-Z )2 the

measurement partial derivatives are given by

- - (3.2)
[XXi I~g ,_ 1

Now, assuming a unit error variance in pi, a user information matrix
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can be computed from

Hi

H2

LHk

and the corresponding unit covariance matrix is

COV u - INFI1. (3.4)

This is termed a unit covariance here because the unit range

variances do not reflect reality but produce user position sigmas

that can then be multiplied by actual system errors to give

realistic user errors. The trace of the COV matrix describes the
u

variance of the user's position error and clock bias given a unit

variance In each range measurement. rr[COVu] is thus called the

Geometric Dilution of Precision (GDOP) since it describes a four-

dimensional geometri error. Other similar definitions follow:

PDOP . [COVu(1,1) + COVu(2,2) + COVu(3,3)] (3.5)

Position Dilution of Precision

HDOP - [COVu (2,2) + COVu (3,3)] (3.6)
RTN RTN

= Horizontal Dilution of Precision
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vDop - COVu (.,.) (3.7)

HTN

Vertical Dilution of Precision

TDOP COVu(4,.) (3.8)

• Time Dilution of Precision

Note that GDOP requires the inversion of a 4 x 4 symmetric

matrix, and PDOP requires the inversion of a 3 x 3 matrix. It will

be seen in GDOP and PDOP plots that they provide essentially the

same information; thus, a user can save processor time by using PDOP

in selecting the optimum set of four CPS satellites. It would be

even more beneficial if the trace of the user information matrix

instead of COVu could he used to determine optimum GPS satellite

selection. But, as noticed by Fang [1980], each rowi partial in the

H matrix is a unit vector pointing to GPS,, while the fourth

component is 1. When the product HTH is formed, the resulting

trace for n satellites can be obtained through the commutative

property of the trace,

Tr(HTH) - Tr(HHT) (3.9)

but,

n x-x 2 Y-Yg 2 ZZg 2

Tr(HHT) + 1  + 1 2n (3.10)i) P/ i P1i

-- -- --
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Therefore, the trace of the user information matrix is a constant

equal to 2n for n satellites and gives no information about the

geometric attributes of the configuration.

3.3 Constellation Comparison

To determine the effect of constellation selection (3 x 6

or 6 x 3) on CPS vehicle navigation, a relative geometry computer

program was written to step through one 12-hour GPS cycle. Each 10

minutes, satellite positions were computed and used to determine

GDOP and PDOP for any desired GPS user spacecraft. In addition,

satellite visibility times were accumulated so a total percentage of

the orbit visible to each satellite was available. Figure 3.1 shows

GDOP and PDOP, along with number of satellites visible to the GPS #1

spacecraft for the symmetric 6 x 3 constellation. Elevation limits

of -280 to -76° , as recommended by Chao [1981], were used in the

visibility check, and all satellites visible were included in the

calculations. It was decided to use all visible satellites in the

geometry calculat'- s because the GPS crosslink (L3 at 1381 MHz)

will allow each satellite to transmit for approximately 1.5 seconds

every 36 seconds [Barr, 1981] and the navigation algorithm would

benefit from clock and position information from all available

vehicles rather than selecting an optimum set of 4. GDOP and PDOP

follow similar but offset paths for other vehicles, but the GDOP

patterns are identical for any two vehicles when corrected for
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satellite phase difference. Note that there is an inverse

correlation between GDOP and number of satellites visible, with the

minimum GDOP (2.5) corresponding to 14 vehicles visible and the

maximum (-4.2) corresponding to 11 visible.

Figure 3.2 shows the same information for the unsymmetric

3 x 6 constellation, satellite #1. This constellation does not

produce similar GDOP patterns for different vehicles, and the

minimum values (2.5 and -2.8) and maximum values (-4.7 and 4.o) are

also inconsistent among users. Table 3.2 shows the minimum and

maximum values over one orbit for the 18 satellites. Note that most

of the values are higher than those encountered in the 6 x 3

constellation and that all of the average values are higher in the

; 3 x 6 case.

~Figure 3.3 shows the percent of the orbit during which

each GPS sc'ellite Is visible to vehicle #1 in the 6 x 3

constellation. The values range from a low of about 38% to several

100% cases. Figure 3.4 depicts the same information for vehicle #1

in the 3 x 6 constellation. The main difference is that some

satellites in the 3 x 6 constellation are invisible to each other

(satellite #1 cannot see #2 and #5), potentially weakening the

position and clock estimatioon results of the whole system. For this

reason and also because of better GDOP performance, the symmetric

6 x 3 constellation is desirable from a satellite-to-satellite

tracking viewpoint.
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TABLE 3.1. GPS ORBIT ELEMENTS

A. Unsymmetric 3 x 6 Constellation

Semi-major axis: 26575.6 km

Eccentricity: 0.0

Inclination: 55 deg

Relative Ascending Node: 0, 120, 240 deg

Argument of Perigee: 0 deg

Mean Anomaly at Epoch:
Plane 1: 0, 45, 90, 135, 270, 315 deg
Plane 2: 20, 65, 110, 155, 200, 245 deg
Plane 3: 40, 175, 220, 265, 310, 355 deg

B. Symmetric 6 x 3 Constellation

Semi-major Axis: 26575.6 km

Eccentricity: 0.0

Inclination: 55 deg

Relative Ascending Node: 0, 60, 120, 180, 240, 300 deg

Argument of Perigee: 0 deg

Mean anomaly at Epoch:
Plane 1: 0, 120, 240 deg

- Plane 2: ;'0, 160, 280 deg
Plane 3: 80, 200, 320 deg
Plane 4: 120, 240, 0 deg
Plane 5: 160, 280, 40 deg
Plane 6: 200, 320, 80 deg

3.4 GPS Error Sources

The consider covarlance analysis that follows in Chapter 4

provides realistic satellite position errors when given realistic
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TABLE 3.2

kMINIMUM, MAXIMUM AND AVERAGE GDOP VALUES

A. Unsymmetrlc 3 x 6 Constellation

Satellite: 1 2 3 4 5 6 7 8 9

Min GDOP: 2.37 2.47 2.45 2.38 2.46 2.58 2.38 2.46 2.60

Max GDOP: 4.40 4.04 4.72 4.29 4.21 4.70 4.29 4.83 4.51

Avg GDOP: 3.30 3.25 3.48 3.19 3.24 3.46 3.30 3.62 3.51

Sa.:.llite: 10 11 12 13 14 15 16 17 18

Min GDOP: 2.65 2.66 2.29 2.58 2.29 2.59 2.38 2.38 2.64

Max GDOP: 4.54 4.62 4.20 4.23 4.10 4.14 4.48 4.58 4.83

Avg GDOP: 3.44 3.60 3.28 3.23 3.19 3.37 3.25 3.35 3.49

B. Symmetric 6 x 3 Constellation

Satellite: All

1 Min GDOP: 2.37

Max GDOP: 4.25
iAvg GDOP: 2.88
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values of the lo errors expected to be seen by the satellite. The

purpose of this section is to describe the error sources in the GPS

autonomous navigation scenario and, where necessary, to determine

values or bounds on the values expected to be experienced by the

satellite. The results of the consider analysis will then indicate

which error source effects must be modeled or estimated in the

onboard filter algorithm. Some of these effects are unobservable by

satellite-to-satellite tracking, so these error sources, if the

effects are large enough, will be added to the onboard algorithm

without considering them in the covariance analysis.

The GPS autonomous navigation problem contains several

error sources in common with a user on the ground and some unique

errors of its own. A ground user experiences the following error

sources [General Dynamics, 19783:

a. user clock bias and drift,

b. satellite clock bias and drift,

c. receiver movement during signal transit,

d. satellite ephemeris,

e. relativistic effeccs,

f. antennae offseta,

g. receiver signal delay,

h. time tagging,

i. ionospheric delay,

j. tropospheric delay.
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A GPS satellite receiver located above the ionosphere sees errors

due to

a. user clock bias and drift,

b. satellite clock bias and drift,

c.- receiver movement during signal transit,

d. satellite ephemeris,

e. -relativistic effects,

f. antennae offsets,

g. receiver signal delay,

h. time tagging,

I. earth geopotential,

1 j. n-body gravity,

k. solar radiation pressure,
1. vehicle thrusting or outgassing,

m. earth polar motion and angular velocity.

iIn this study, it is assumed that pre-processing of

Ipseudo-range and integrated doppler measurements is performed and

I that re idual errors due to receiver movement, relativity, antennae

offsets, receiver signal delay and time tagging can be modeled or

Icorrected for with the remaining measurement errors expressed as

uncorrelated, zero-mean, Gaussian errors. Simulation of the

remaining errors Is described in the following sections.
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3.4.1 GPS Clock Errors

Operational GPS satellites are planned to contain two

rubidium and two cesium beam frequency standards with the pcssible

addition of a hydrogen maser [Payne, 1982]. To characterize the

errors inherent in these precise time standards, it is convenient to

measure clock stability in terms of the Allan variance of its

6f
fractional frequency error, o The error in the GPS clock after

0

some elapsed time from update is

T(f)- T(fo ) f (t-to) . -( (t-to) 2

0 0

+ t d (3.11)

0

where

fo - 2%vo = nominal frequency (rad/see)

f - time-varying true frequency

Af - frequency offset

f -frequency drift

6f(t) - time-varying random frequency error

Differentiating yields

0_ t) _S t f (t-t o ) 0 0(3.0)Fo o 2f fo
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Now, following the description by Meditch [1975], let

y(t) - _ fractional frequency error, (3.13)f
0

then the average fractional frequency error over a sampling period,

T , is

tk+t
-- .I y(t)dt, (3.14)

tk

which, after substituting and assuming 6f constant over T

becomes

¢(t k + T) - (k)
SYk f '(315)

where O(c) is the phase error at t The Allan variance is then

defined as

I(T) = 1 k E[( Yk ) 2

2m I " k-- - Yk)
k=1

for mn samples of7

Allan variance is defined in the time domain by 02Lt)
1y

and in the frequency domain by Sy(f) . Clock errors in the

frequency domain typically exhibit at least two types of frequency

standard noise: white frequency noise, defined by a constant

spectral density versus frequency and flicker noise, defined by a
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-20 db/decade slope versus frequency. In addition, at very low

frequencies (long sample times, x), the integral of white noise

causes a -40 db/decade slope. A typical Allan variance curve

showing GPS specifications is given in Figure 3.5, along with actual

on-orbit clock values [Payne, 1982].

3.4.1.1 GPS Clock Error Simulation

Since Allan variance is widely used as a measure of atomic

frequency standard stability, time error simulation using an input

value for Allan variance is a necessity for GPS error analyses.

To generate a frequency error signal, y(t) , and its

integral, the phase error, the Allan variance curve is described in

the time domain by the power series

02( ) T' (3.17)

where 0 -2, -1, 0, +1, +2 and each value of a dominate3 in a

region T to Tj . In the frequency domain, a similar series can

be used to compute the one-sided spectral density,

sy(f) ho f (3.18)

a

with a having the same values as 8 . Similar to 6 , each value

of a dominates over a certain frequency range. The constants, K0

and h define the level of the time or frequency clock error



76

_____ __ 40

U I a

4'

A,4

LUU

cc aU C) a

-aU U

CL

02 2 C xI1 CL (

w m . cc

-C 4- - 4c

-- --Z

004

YViVIS 3ONVWUVA NY11Y



77

segment.

To simulate y(') , the Allan variance levels and corner

frequencies are specified. These values determine the Bode plot of

the one-sided spectral density. From the Bode plot, spectral

shaping produces a dynamic system function [Laning and Battin,

1977). An inverse Laplace transform then generates time domain

linear differential equations. The solution of these equations

produces y(-) and its integral.

For white frequency noise and integrated white frequency

noise, the inverse Laplace transform is straightforward. The power

spectral density function corresponding to integrated white noise

(frequencies below f, or averaging times above T2) is

,2y22(s 2

SY(s) - 1 (3.19)2 a(s2 + 2

where s is the complex frequency o + jw and w - f.

This is the spectral density of a Gaussian white noise process

driving a linear system. It can then be expressed as

Sy(s) - H(s) H*(s) Su(s) (3.20)

where H(s) is the linear system transfer function, H*(s) is its

complex conjugate and Su(s) is the spectral density of the white

noise process. Since Su(s) is constant, assume it to be unity,

implying unit variance, then

.-- ,-2. . - - - - - . . . .
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H(s) (s + awl) (3.21)a s + 1

and the transfer function for the output signal is

Y(s) - H(s) U(s) - H(s). (3.22)

Taking an inverse Laplace transform produces the linear differential

equation

th W) -w1x() + (a-1)wiu(T) (3.23)

then

Y(T) [x(T) + u(,)] (3.24)

where u(t) is the output of a unit variance Gaussian random number

generator.

Flicker noise, however, cannot be generated by one inverse

Laplace transform since the spectral density curve corresponds to a

transfer function of the form

H(s) -C1 (1)1/2 (3.25)
(S)1/2 s

for which a finite-order state representation cannot be constructed

which will generate the system output [Meditch, 1975]. Several

approaches to approximate y(t) for flicker noise have been

proposed, and Meditch describes a method by Barnes and Jarvis [1971]

that efficiently models 1I(s)11 2 by a cascade of lag networks.
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The technique consists of approximating the desired transfer

function with slope -10 db/decade with n stages, each consisting

of a -20 db/decade section and a white noise (constant spectral

density) section. For simulation purposes, Meditch states that a

choice of n - 4 gives a reasonable and efficient approximation to

the desired shape.

Once the series approximation to 1/(s)1/2 is complete,

the inverse Laplace transform gives a linear differential equation

for each stage. These equations then form an n-vector linear

differential equation whose solution provides x(r) such that y(T)

for averaging times between T and -r can be simulated.

As seen in Figure 3.5, GPS clocks are exhibiting Allan

variances of 10- 12 for T - 1 hour to 10-13 for T > 2 days. These

values give staoilities of 10- 3 to 10-4 ns/s and are used in the GPS

navigation error model as expected accuracies of operational cesium

clocks. It is assumed that hydrogen masers are one order of

magnitude better [Kartaschoff, 1978, p. 62]. Note that, from Figure

3.5, another order of magnitude improvement in 6f/f would allow

.4 the clocks to run independently for 140 days with a user equivalent

range error (UERE) of approximately 90 meters.

3.4.2 Satellite Ephemeris Errors

GPS ephemeris errors in the ground tracking mode are

required to be on the order of 1-10 m. Current estimates of

-_ __
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position errors indicate that 12-hour periodic errors of 2, 10 and

6 m in the RTN directions are combined with a secular tangential

error growth of 3 m/day [Anderle, 19801. This short-term linear

growth becomes quadratic in the long term. GPS satellite-to-

satellite tracking errors, however, have not been quantified for

long-term operation. This is one goal of this study. Liu's [1981]

analysis of satellite ephemeris errors over two weeks of GPS-GPS

tracking shows an 80 m secular growth and a six-hour 20 m periodic

Vterm due to solar radiation pressure errors.

In this study, one satellite at a time is analyzed and it

is assumed that initial RTN error sigmas are 2, 10 and 6 m,

respectively, with a secular tangential growth of 3 m/day for the

other vehicles. These values are used in the consider analysis to

determine navigation errors of satellite #1.

3.4.3 Earth Geopotential Errors

One of the goals of this study is to determine the

accuracy and size (order and degree) of the onboard geopotential

required for accurate GPS navigation. In addition to being subject

to secular perturbations due to J2, the GPS 12-hour orbit is

resonant with the harmonic coefficients of degree 2 and 4, so errors

in their values and errors due to their absence in the onboard

filter will be magnified over any long prediction interval.

Table 3.3 from Wagner and Lerch [1978] describes the

• . .. i
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estimated error in the GEM 8 earth model obtained by comparing the

earth model predictions with new observations not included in the

model formulation. These errors are then used in the analysis of

geopotential error effects on oPS orbits in Chapter 4.

TABLE 3.3

ESTIMATED GEM 8 GEOPOTENTIAL ERRORS ( x 10-9 )

Degree (z)

2 1 3 5
3 2 7 11 14
4 1 5 6 6 11
5 2 8 12 13 14 18
6 2 7 9 9 12 10 15
7 3 10 14 15 16 16 16 22
8 2 9 12 12 14 12 16 12 17
9 2 12 16 18 20 17 19 18 17 11
10 2 10 15 16 17 16 17 14 17 11 16
11 3 14 17 21 20 21 20 18 19 12 16 17
12 3 11 15 19 18 21 18 18 18 11 15 8 7

0 1 2 3 4 5 6 7 8 9 10 11 12

Order (m)

3.4.4 Solar Radiation Pressure

As stated in Section 3.4.2, solar radiation errors

considered by Liu caused a 20 m periodic satellite position error.

Liu assumed a lo radiation pressure error of 10%, for an
10 2

acceleration uncertainty of 1010 m/s2 . Recent discussions with the

FNSWC personnel who determine GPS reference orbits indicate that

radiation pressure coefficient errors (1o) of approximately 1% have

been observed. These figures provide a range for the errors

I-
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considered in this analysis.

3.4.5 Vehicle Thrusting or Outgassing

The GPS vehicle is subject to periodic gas jet thrustirg

to maintain or change orbital elements and to dump excess momentum

from the attitude control system (ACS) momentum wheels. The orbit

adjusts are planned and occur infrequently, but when gas jet

momentum dumping occurs, it is performed automatically by the ACS.

If operational satellites employ gas jet dumping, satellite

navigation performance would suffer dramatically each time gas jet

firings occur because of thrust imbalance and possible plume

impingement. It is expected, however, that magnetic dumping of

momentum will be accomplished by the onboard ACS processor. Tests

on current CPS vehicles indicate that magnetic momentum dumping is

successful [Ferguson and Kronke, 1980], so gas jet thrusting is

necessary only for orbit maneuvering.

Outgassing is a phenomenon that does not lend itself to

easy prediction. Phase I GPS vehicles on orbit appear to be
-t experiencing an acceleration along the spacecraft solar panel axis

on the order of 1 10-12 to ± 10-13 m/s2 .  The cause of this

acceleration is possibly due to unmatched radiators on opposite

sides of the vehicle, and this thrust, while not strictly

outgassing, has a form similar to that caused by the boiling off of

volatile gases. If analysis confirms that the operational venicles

0
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may experience unmodeled thrusting, then the onboard filter must

include these unmodeled accelerations in the state vector. Since

the existence and form of these iccelerations in the operational

system are unknown, they are neglected in this analysis.

3.4.6 Earth Polar Motion and Anguar Velocity

Even if the GPS satellites could navigate accurately with

respect to each other and contained precise models of the other

perturbing forces, the constellation would still drift from the

earth-centered, rotating frame (ECR) in which user positions are

defind. The largest error source between an inertial earth-centered

frame (ECI) and the ECR frame is the angular velocity of the earth,

with smaller errors caused by polar motion. The integral of angular

velocity errors is the time difference UT1-UTC. Currently, it has a

yearly drift of approximately 1 second, the well-known leap second

correction.

UTC (Coordinated Universal Time) ruoresents a "uniform

4time scale" and is obtained by applying a fixed offset of

32.184 seconds to an international atomic time scale (TAI)f
maintained by the Bureau International de l'Heure (BIH) in Paris

[The Astronomical Almanac, 1983]. The difference, UT1-UTC, plus the

record of leap seconds then is a measure of the changes in earth's

rotation rate. UT1-UTC is published for 5-day intervals by the BIH,

and these tables provide the raw data by wnich UT1-UTC can be

i i7
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R

predicted and these predictions verified [BIH, 1974].

3.4.6.1 UT1-UTC Prediction

BIH tatles from 19711 to ar ;;'e analyzed to determine

the long-term (> 6 month) predictability of UT1-UTC. Short-term

predictions have been made by Zhu [91] and Meyerhoff [1978] in

which curve fitting techniques were used to fit UT1-UTC values over

one year (Meyerhoff) and three years (Zhu) and then predict these

values for periods of 5 to 40 days. Each study used a series of the

form

UT1-UTC - a + bt + n i  n + c , Ot

i Lci sin (A5 _ Qc S W~ J
(3.30)

Zhu set n-2 and Meyerhoff determined fits for n-1 to 15 with

the best res ,ts obtained with n-4 to 6. Meyerhoff's power

spectral analysis indicated that n must be at least 4 to fit the

major frequencies. Both authors then predicted UTI-UTC values for a

large number of 5- to 40-day intervals. Meyerhoff found that lo

errors of 2 to 7 ms resulted from his 5- to 20-day predictions, and

Zhu observed prediction errors of 1.8 ins for 5-day predictions to

3.7 ms for 40 days but that the er,'ors grew rapidly after 40 days.

It appears that the determination of the long-term drift over three

years significantly improved Zhu's results.

Since autonomous operation of GPS for six months is a

i ;
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goal, the long-term prediction of UT-UTC is a requirement of the

onboard software. To determine the accuracy of this prediction, BIH

data from 1974 through 1980 were fit in one-year batches by

Eq. (3.30) with n-4. The fit residuals shown for 1974 and 1979

(Figures 3.6 and 3.7) are typical, and it is seen that the fits

exhibited maximum errors of approximately 4 ms and RMS values of 2

zMs. When the equations were used to predict UTI-UTC for one year

following the fit, several different types of behavior were

observed. The best prediction was for 1975 (Figure 3.8), with

maximum errors of -10 and +17 ms and an apparent long-term periodic

behavior. 1975 data predicted to 1976 (Figure 3.9,, however, showed

a negative slope secular trend with the maximum error reaching -78

I ms, and the 1979 fit-1980 prediction (Figure 3.10) had a positive

slope with a maximum error of 115 ms. In all of the one-year

predictions, six-month performance was better than 70 ms.

When data over three years were fit, Eq. (3.30) was

augmented by the addition of two-year periodic terms. After

correcting for leap neconds, a sliding three-year fit for data

I between 1974 and 1979 was used to predict UT1-UTC values for the

following une year. The results for one-year predictions at six-

Umonth intervals are shown in Figures 3.11 through 3.15, where

maximum six-month prediction error was -58 ms and the RMS error for

all predictions was 36.7 ms. Note that six-month predictions were

fmuch better than those for one year. The one-year RMS error was 86

I 4
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ms and several examples of large secular growth were observed.

From these oata, it appears that errors of up to 70 ms

arise when one-year BIH data is used to predict for six months but

that three-year data spans allow predictions with lo errors of less

than 40 ms to be made. Since 50 ms appears a reasonable limit to

six-month UTI-UTC predictions, the effect of this error on GPS

navigation will be assessed.

A UT1-UTC error of 50 ms corresponds to an angular error

between the ECR and ECI coordinate frames of 3.65 Prad = .75 arcsec.

At GPS altitude, this represents an apparent ephemeris error at the

equator of 96.5 m. For GPS navigation, this is a large error

compared to the desired accuracy but may not be as severe as other

error sources over six-month operation. If degraded performance is

allowable for extended autonomous operation, this error may be

acceptable. In event this error must be reduced better

understanding of earth rotation, periodic onboard model update or

active GPS tracking of earth-based transmitters would be required.

3.4.6.2 Polar Motion Predictivn

Both Meyerhoff [1978] and Zhu [1981] report that modeling

of the moving coordinates of the geographic north pole to much

better levels than the UTI-UTC error. Meyerhoff's 20-day pole

positions showed x-only coordinate errors of approximately .02 and

.01 arosec, respectively, while Zhu reports 60-day average RSS
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errors of .02 aresec. Zhu suggests that this .02 arcsec error

remains fairly constant for up to two years of prediction, thus

polar motion is about three orders of magnitude less severe than

earth rotation rate as an error source.

3.4.6.3 GPS Coordinate Systems

A GPS user receives satellite position Information in the

ECR coordinate system (Van Dierendonck, et al., 1980], while the MCS

software determines the satellite state in an ECI coordinate system

defined by mean equator and equinox of I January 1950 [General

Dynamics, 1978] and uses the matrix product ABCD to transform from

ECI to ECR coordinates. D is a rotation matrix containing luni-

solar and planetary precession terms necessary to transform from the

mean equator and equinox of 1 January 1950 to the mean equator and

equinox of date. C is a matrix containing nutation terms necessary

to transform from the mean equator and equinox of date to the true

equator and equinox of date. The B matrix converts from the true of

date inertial system to an earth-fixed system by rotating through

the Greenwich Hour Angle plus UTI-UTC and nutation (equation of the

eqinoxes) terms and, finally, the A matrix contains polar motion

rotation terms.

The onboard estimation algorithm has a choice of these two

coordinate systems in which to perform its ephemeris calculations.

If the ECH frame is chosen, conversions of output are unnecessary,

-W.
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but the equations of motion are complicated by

a a 2 w x v x r

where is the angular velocity of the earth. The errors in W

are not easily modeled, as the slope of the UT1-UTC curves gives the

earth rotation error; thus errors in the spacecraft acceleration are

difficult to predict in the ECR frame. In addition, the

reconstruction of past performance of the navigation filter is

complicated by the time-varying nature of 6 w. For these reasons,

it is recommended that the onboard algorithm use an inertial (mean

of 1950.0) frame for the ephemeris calculations.

I4



CHAPTER 4

GPS ERROR ANALYSIS

4.1 Introduction

A relative autonomous navigation application for PS

spacecraft will include an observation filter and an onboard model

for ephemeris prediction. This model of the satellite dynamics is

used for propagating the spacecraft state and error covariance

between filter updates. The propagation interval varies from the

1.5 second doppler averaging time to a possible one- or two-hour

delay between updates.

The method chosen to determinp the requirements foil tine

onboard model is a mixture of analytical and numerical techniques.

Satellite-to-satellite range and doppler observations from

satellites moving in similar orbit planes cannot provide information

concerning a common secular motion of all satellite planes, but

should be able to accurately observe differentibl planar and in-

plane motionz. In this investigation, secular planar motion caused

by the various perturbing forces is determined analytically through

examination of equations of motion of the orbit elements and

numerically through a consider covariance analysis, while the

effects of errors in model parameters upon planar and in-plane

motion is determined through consider analysis. Figure 4.1 depicts

the process by which the model is selected and analyzed. The model

99
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is then used in 18 decentralized estimation filters to propagate the

state vectors of the 18 satellites. Observations produced by a

high-order simulation program and corrupted by random measurement

q and clock noise are then processed by the estimation algorithm. The

estimat!on output is compared to a truth ephemeris produced by the

simulation program to determine the accuracy and stability of the

proposed algorithm.

Since model error will be a prime consideration in the

design of an onboard filter, this chapter starts with a discussion

of the two prevailing techniques used to handle and quantify this

2error. The motion of GPS orbit planes is then analyzed, followed by

a consider analysis of the expected relative navigation accuracy of

fthe system. The objective of this chapter is to define a model to

be used in the estimation algorithm proposed in Chapter 5, along

with its expected performance.

4.2 Filter Divergence

As derived in Chapter 2, the state errc.. covariance

matrix, P , when propagated and updated by the Kalman filter

equations (Eq. 2.4 and 2.8) gives an optimistic (low) value for the

state error variance. In a filter where the state is bei;ag

corrected through the inclusion of observations, this low value of

P causes a low Kalman gain, K , which results in new data being

ignored. If the true spacecraft state is given by the n-vector

3W'
V.' 4-
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X(t) and an a priori estimate of this state is defined by X*(t),

then define the state error by

x~t) - x~t) - x*Ct) (4.1)

The nonlinear orbit determination problem, given by the state

differential equation

i(t) - F(X(t),t) (4.2)

and the m-vector measurement equation at t t i

Yi - G(X(ti),ti) +i (4.5)

with ci N(ORI), RI > 0

is then linearized by expressing x(t) as a Taylor series expanded

about the a priori estimate, X*(t) and Yi as a Taylor series

about Y - G(X*(ti)lti )" The linear problem is then

;(t) - A~t)x(t) (4.4)

Yi " Hi x(t ) + C I

where

Act)- DF(X ,t) *(t) 45

aGH xti ),ti) t (4.6)

An unbiased, minimum variance estimate of the state error
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at t - tk is then given by Jazwiriski [1970, p. 198] as

" k + Kk(yk - Hjk) (4.7)

where

_x 0(tktk (4.8)

and t(tktkl) is defined by Eq. (2.5).

Note that in Eq. (4.7), the propagated state error

estimate, Xk is updated by observation residuals, Yk , multiplied by

Kk so that if the covariance matrix, W , drops to unrealistically

low values, the gain Kk  PHT(H}T + R)-I becomes small, and the

updated state error 2k is not sensitive to the observations. Thisik

leads to the well-known symptom of filter divergence where residuals

become large and, finally, the state error grows to values much

larger than the error bounds expressed by the variances in P

The cause of filter divergence is the assumption that

reality is correctly modeled by the two sets of equations, F(X(t),t)

and G(X(t1 ),t1 ) when, in fact, our knowleage of the real forces

acting on a spacecraft and of the actual physics involved in a

measurement process is quite limited. Even if we had perfect

knowledge of the forces and measurements involved, the solutions to

the state differential and measurement equations are only

approximated on a digital computer. The two major errors,

approximation of the equations solutions by finite series or

'-S2
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numerical integration (truncation error) and finite computer word

length (r und-off) would continue to give errors for x(t) and

Yi

4 Filter divergence is not observed in pre-miasion

covariance analyses because observations are not being processed to

produce stete errors. A Monte Carlo analysis in which a more

sophisticated model generates observations for use in a lower order

filter can be used to evaluate this phenomenon. Covariance analysis

results do, however, suffer from the effects of model error. The

state error variance is optimistically low and desired information

about the effect of unmodeled errors is not produced.

4.3 State Noise Covariance Analysis

To combat the problem of filter divergence or an

unrealistic covariance matrix, estimation algorithms can employ

state noise or model noise compensation [Jazwinski, 1970, pp. 244-

247]. Instead of the "perfect" model assumed in Eq. (4.4), let us
I

assume that our state differential equations are corrupted by a

Brownian motion process such that

x(t) - A(t)x(t) + B(t)dB(t) (4.9)

Yi 0 Hix(ti) + Ci

where Bt) is a non-random matrix that maps the r-vector dB(t)

into the n space of x(t) and

...... .. . m I J. ..... -: , . ;-~ "
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E(d8(t) 0 (4.9)

E[dB(t)dST(t)] Q Q(t)dt Q(t) > 0 (4 1)

E[d8(t)d8T(.r)] Q6(t-r) 6 dirac delta (4.11)

E[dB(t)&f] o (4.12)}i

The state error is then propagated from tk to t by

X(t) = *(t'tk)x(tk) + f (t, )B()d8(t). (4.13)

tk

To propagate P , first look at the propagation of P without model

noise.

F(t) -(ttk)Ptk)T1ttk)4)

Differentiating,

;() (t,tk)P(tk)O(t-tk)

+ O(t'tk)P(tk) T (t'tk) (4.15)

and substituting for ;(t,tk)

;(t't k) - A(t)O(t'tk) (4.16)

we arrive at the matrix Ricati equation:

¢(t) " A(t)o(t,tk)P(tk )T(ttk)

{
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I + * I~ t ; ,k )p~ t k ) , t tt k) A ~

n A(t)Fr(t) + 7(t)AT(t). (4.17)

Now, for the case of model noise, if R(t) is an unbiased estimator

of the state error x(t) and t > IL [Maybeck 1979, pp. 164J-167].

and the covariance is defined as

-E[Ax(t)AxT(t)I (4.19)

where

Ax X(t) - (t) 0 (tltk)X(tk)

+i - ft  +(,)()OT -(tt(T)gt-) (.
tk

*(t,tkJAx(tO +

J then

ii Vt) E~ltt~k)Ax(tk) +It
t

IO(t'tk)Ax(tk) + Jf t tBtd~)

t k

-E[ (t't k)t'x(tk)xTtk )OT( tk)I
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t

1k

+ Elf (t,T)BUi)dS(T) 0(t,t k)Ax(tk)I
tk

ft J0 (t,T)B(T)d8(T)d~T sB~) T ts] (4.21)
t t
k k

Now, assuming that Ax(tk) and do(T) for T 4 t k are

uncorrelated, i.e.,

E[A( d T(I) T a o 4.2

and noting that 0(t,T) and GNt are non-random, and that

E[do(T)do(s)] - Q6(T-s) ,(14.23)

Fr(t) - *(t,tk)p(tk )OT(t 'tk)

+ ft 0(t.T)B(T)Q(- )BT (T)QT(t, )dt (14.24)

Differentiating by Leibnitz rule and using Eq. (14.16),

~(t - ~t)(t~k)p(tk)oT 'ttk) + 0(t'tk)P(tk)OT(t'tk) T t

+ 0(tT)B(T)Q(T)BT(T)OT(tT)J,

tkk

+f'[tOt.)B )QTB(TOTtOr

ii _ _ _ _

k __ -.
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i(t) - A(t)-F(t) + F(t)A T (t) + B(t)Q(t)BT(t) (4.25)

Eq. (4.25 ) shows that, since Q(t) > 0 , the covariance grows

between tk and tk+1 by the integral of B(t)Q(t)B T (t) , where

the matrix Q describes the error variance of the state

differential equation model error. This technique of augmenting the

P matrix by a Q matrix is in common use in filter algorithms. The

Space Sextant software incorporates the Q matrix formulation

[Martin-Marietta, 1981] and it is used in the GPS navigation

algorithm proposed in Chapter 5.

4.4 Sequential Consider Covariance Formulation

The state noise compensation method described in Section

4.3 prevents filter divergence when proper values for state noise

are used in the Q matrix. However, it has three disadvantages

when used for covariance analyses. First, the values describing

state differential equation noise tend to be arrived at in an ad hoc

fashion since the actual errors are unknown, just as the actual

force acting on the spacecraft over time is unknown. Second, and,

more important from an error analysis viewpoint, is the difficulty

in isolating and evaluating the effect of specific errors in the

state model on the error covariance. Third, it is impractical to

analyze the effect of estimating a parameter that is causing large

errors, because the entire filter must then be redesigned.

To overcome these difficulties, consider analysis has come

41
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into widespread use. This technique allows the effect of errors in

model parameters upon the dynamic 3tate to be considered. Bierman

[1977, pp. 162-171] describes a batch processor in which the state

vector is partitioned into a set of variables and parameters that

are to be estimated and a set of parameters whose effect is only to

be considered. After processing a fictitious set of noisy

observations, his algorithm then propagates the entire covariance

through desire d time intervals to determine the state error in the

future.

In the CPS scenario, however, observations would be

processed onboard in a sequential filter, thus tne sequential

covariance analysis proposed by Maybeck [1979, pp. 325-336] is used.

This method assumes that a high-order "truth model" is available

that adequately represents the real world. It is given by the

linearized continuous differential equation

it(t ) - At~t) tJt) + Gt~t)wt(t )  (4.28)

where 4t(t) is an nt  vector and wt(t) is an St vector zero-

mean white Gaussian noise sequence, with
Ii

E[t(to)] - o (4.29)

E[&t(to) to Pt (4.30)
0 0

Discrete measurements available from this model are obtained by

..... ------
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Yt(ti) = Ht(ti)&t(ti) + t(t,) (4.31)

with

E[et(ti)] - o (4.32)

E[Et(ti)JTt 2] = Rt(ti) t i  t j

o t t. (,33)

For consider analysis, the state vector &t contains both the

spacecraft dynamic state and constant model parameters. The dynamic

state, which is of interest at each time t , is separated by &t(t)

by

xt(t) - Ctt(t). (4.34)

After arranging &t in a manner consistent with the desired

outcome, the Ct matrix can be partitioned into a p x p identity

matrix and a p x nt-p null matrix.

The "truth model" is then used as a basis with which to

compare several reduced order candidate linear "filter models," each

described by the n-vector differential equation

Q(t)- F(t)^Ut) (4.35)

with

E[ [t 0)] - o (4.36)

V.
I I I IIII|1 | 1 1 • /
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, o'E [Z( o) (to)] " (4.37)

and updated by measurements modeled by

"(ti) - H(ti)^(t1 ) + e(t1 ) (4.38)

with

0[(.t,)] - o (4.39)

E[e(tt)cT(tj)] R(ti) i t i "t

0 tI  tj (.4)
$ t (uto

The Kalman filter for these filter models is the same as described

in Section 4.2. Again, only a subset of this state vector contains

dynamic terms, thus

x(t) - C (t) (4.41)

where C is a p x p Identity matrix plus a p x n-p null matrix.

To compare these two models, form the augmented state

vector

[t(t )

a(t) - (41.42)

with

P(o] 0P° (4.43)
Pa(to) E[Ea(to a o)] " 0 Po

-A
->---r.-
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This augmented state is propagated byI

Ta(tk) - a(tk'tk-l)^a(tk-1)

wheriesattk- is an Kn)d&at) state transition matrix

Fa;(t,tk-1) =Aa(t)4Oa(tltk-1.) (4I.45)

with

a~tk~1,k~ ) 1(14.146)

and

[At~t)
7 A~a(t) A(t)l(417

Since the state vectors &tjt and (t) contain both

dynamic and constant terms and the consider analysis produces a time

history otf state errors due to these terms, it is convenient to

represent Oa by its components. The two dynamic state transition

matrices are

ttktk-1) max tk-) (14.48)

and

O(t k~tk a x (tk) (4.49)
k-) x(tk1)
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while the two state parameter transition matrices are

Wt(tkttk-l) t(tk) (4.50)
tt(tk_1)

and

3x (tkr(tktk-1) k) (4.51)

where Ct  and C* select the parameters contained in and .t

The augmented state covariance is moved forward in time via

*a(tk) = a(tkItk1)Pa(tk1 a (tk,tk-1) (.52)

Measurement processing gives the state measurement update:

^(tk) - Ma(tk)Ta(tk) (453)

where

Ma(tk) " K(tkHtk [I-K t)(t- ) ]  (.

and Ht(tk) contains partials of the measurement with respect to-I

the entire truth model state.

The covariance is updated by

P Tk)(t
a(tk) Ma(tk)Pa(tk)MT (tk)

+ Ka(tk)Rt(tk)KT(t) (455)
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I where

g0

Kt) L tk (14.56)t a(tk) " K(t

Note that the covariance of interest is actually

P,(t) - E(nt( t)]jt)) (4.57)

where

n(t) - x(t) - xt(t) (4.58)

This covariance is obtained from Pa(t) by

where(t) CaPa(t)Ca ('.59)

where

Ca [-Ct C] (4.60)

If x(t) consists of F and V, then P contains the sum of the

6 x 6 upper left submatrices of Pt and P

This approach to state covariance analysis assumes that

the filter operatos independently of the higher order truth model

and that the errors in the truth model given by Pto are realistic.
0

If this is true, P,(t) will represent the actual errors exhibited

by the filter in use. As in the state noise compensation technique,

however, the actual error of a dynamic or geometric parameter may

not be known. In this study, normalized partials are used to
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determine the sensitivity of the state to a unit error in each of

the parameters.

4.5 Application to GPS Autonomous 43vigation

COVSEQ is a computer program devised to implement the

sequential consider covariance analysis method for a GPS satellite

navigation receiver. Variables and parameters estimated or

considered in the program are given in Table 4.1.

The program makes use of the propagation capabilities of

the University of Texas Orbit Processor (UTOPIA) to obtain a user

satellite file containing the spacecraft state (-F(t), V(t)) and

partial derivatives, *a(tto) for the several parameters available

in UTOPIA. Since UTOPIA does not produce partials for the state

with respect to lunar and solar mass and position errors, these

partials, along with all geometric measurement partials, are

computed in COVSEQ. UTOPIA produces 0(t,to) and *(t,to), while

COVSEQ requires 0(tj+ltj) and i(tj+itj). This converrsion is

described in Appendix A. The output of COVSEQ is a time history of

the error covariance, P% after a set of GPS range and/or

integrated doppler observations is processed at each desired step.

The error covariance is propagated according to Eq. (4.52) and

updated at each observation time by Eq. (4.55).

Hi

I'
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4.5.1 Pseudo-Range Observation Partials

Measurements available to the GPS vehicle include pseudo-

range and integrated doppler counts. For the L3 crosslink, the

pseudo-range model is given in Eq. (3-1) and state and consider

partials are:

H x x g  0 0 0 ...

1 B i 1 B i 1 B i 1 ___ 1 ___

"" tu u -T 6 arC r BAtS,
3

(4.61)

where Atu and Ats are defined in Section 3.2 and the other

geometric partials are given by

1 -A " t - t 0(4.62)

- sensitivity of observation to a user clock frequency bias

--! I -i a; a;i]
i i  i

, [Hx H HX] [ RTN] (4.63)

- sensitivity of observation to GPS ephemeris errors
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expressed in a GPS-centered RTN coordinate system

Bpi
. . . . 1(4.64)

Ba Asi

- sensitivity of observation to a GPS clock phase bias

(- t - t (4.65)

- sensitivity of obeervation to a GPS clock frequency

bias

4.5.2 Doppler Measurement Model

When a signal of frequency f is transmitted by a moving

source from tI  to t2  and received by a moving receiver between

TI and r2 , the received frequency, fr differs from fg due to

the well-known doppler shift. When the received frequency is

compared to a known oscillator output, fu the resulting

uifference is then integrated to produce the doppler count:

( " u - fr)dT

T2 fudT - frdT (4.66)

31

but fr undergoes the same number of oscillations during T2 -T

as does f between t2 and t1 , thus
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T2 t2

"N fud,- fg dT. (4.67)

T1  tI

Now assuming that f and f are the result of stable oscillators

such that they are constant during the intervals used and noting

that T and t are related by

- t + -- (4.68)

where p is the geometric range and c the speed of light

(c " 3.0 x I0 m/s), the doppler count is then

fg
N - fu(t 2 - t1 ) - fg(i - I1) + -t (P2 - P.,)

i(f " fg)(t2 - TI) + (P2 - PI) (4.69)

Since Eq. (4.69) was obtained for perfect frequency standards, it

must be modified to include errors in frequency, even though they

are small for GPS clocks. Expressing the true oscillator output as

a nominal frequency, f* , plus a first-order term, Af , Eq. (4.69)

becomes

N - (f* - f 2 )I T 1-~ (Af u- Af )(.r TI

c (P2 (- (4.70)

Noting that for GPS-to-GPS communication fu f and multiplying

both sides by S-.
g

I_
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(f2 T1(p 2 - 1
of ~ for
No, Lf*-  9j z,-.), whl the fre-quency..

g for L3  is approximately 10 Hz, while the frequency

stability, AM/f is on the order of i0-12, thus 1. Note

also that IN represents a delta range measurement, thus

fg

Sc(6f u -fg)(T 2 - ) p2 P(.72)

where 6f - f

4.5.3 Doppler Partial Derivatives

The partial derivatives of Ap can be computed at either

I or T2 . Assuming that the receiver integrates from Tj to T2

and then estimates the spacecraft state at T2  the observation-

state partial derivatives are:

a. Position and Velocity

3AaP(t2) ap(t 1) ax(.r1

P P P T2

[- 1 - P2 -p3  ]TI73

P P s t atrix from to

where 0 (.ri, 2) is the state transition matrix from -T, to T2"
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b. User Clock Bias and Drift

0? (4.74)
U

S" 2 I(4.75)
U

C. GPS Clock Bias and Drift

0 (4.76)

" -C - 11 (4.77)

4.6 Model Determination

4.6.1 Geopotential Coefficients

The major geopotentiaal source of secular motion of

satellite planes is the well-known J2 perturbation. J2

mathematically models the equatorial bulge and causes a regression

of the nodes given by

2 " 2 - 2 [a (1 _e2 )] i ( 4.78 )

3 j- cos 1(-8

where

Re - equatorial radius of the earth

a - orbit semi-major axis

e - orbit eccentricity

n = orbit mean motion

_A__
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i - orbit inclination

The effect of neglecting J2  is shown in Figure 4.2, where it is

ii seen that the error normal to the original plane of 873.6 km builds

up over 60 days.

The other main geopotential perturbations are due to terms
which are resonant with the 12-hour orbit period. These terms (1/2
and 1/4) do not cause large nhort-term (less than one day) out-of-
plane motions but can lead to along-track errors large enough to
affect user navigation accuracy. Figures 4.3 through 4.8 show the
error growth due to neglecting these terms, while Figure 4.9 shows
the worst-case out-of-plane error due to neglecting CS 3/2. The
in-plane error plots also include the error due to propagating
initial position and velocity errors. This error reaches 38.459 km,
and when it is removed from the analysis, the remaining in-plane and
cross-track errors are as shown in Table 4.2.

TABLE 4.2

CONTRIBUTIONS DUE TO NEGLECTING
GEOPOTENTIAL TERMS

Maximum Error Contribution of Out-of-PlaneNeglected After 60 Days Geopotential MotionTerm . k m .k_)

1220614.340 1925.871 873608.0CS 2/2 44.669 6.2114 17.6C,S 3/2 167.363 128.897 355.0C,S 5/2 39.038 O.56? 0.0C,S 7/2 38.4595 1 x 10-  0.0C,S 4/4 53.3249 21.086 0.0C,S 6/4 38.4637 0.005 0.0

I
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These results show that a model used to predict over time intervals

longer than one hour should include J and C,S 3/2 and 4/4 terms,

while predictions of approximately 10 m accuracy over one hour can

be achieved with J and C,S 3/2. Note that the out-of-plane

motion due to the J2-induced regression of the nodes is the major

secular planar effect and that C,S 3/2 cause a smaller but

significant motion of the orbit plane.

4.6.2 Solar Radiation Pressure

The effect of neglecting solar radiation pressure is shown

in Figure 4.10, with the maximum error being 2606.9 m. For this

case, the effects are almost entirely in-plane, but periodic planar

movement can be determined from equations as given by Geyling and

Westerman [1971, p. 123] as

S _ Fp sin a sin io(sin e2 - sin e1) (4.79)
n 2 m ro0

and

F sin (c e2 -cos 1)
p cs ~ (4.80)

n2m r

where the sun is assumed to be in the equatorial plane at an angle

ai from the satellite ascending node, and6 (1

Fp - 4.74 x 16 (I A newtons(4.81)

p

II
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for a satellite of mass m , cross-sectional area A , reflectivity

n and radius r°  that enters eclipse at 0I and exists at 02 .

This motion only occurs when vehicles are eclipsed by the

earth, so the onboard model must include eclipse computations. The

fairly large in-plane error caused by neglecting solar radiation

pressure is more significant than a similar sized geopotential

effect, because solar parameters are highly variable, whereas

geopotential terms may be regarded as constant. It is this

variability that requires the solar reflectivity to be estimated by

the onboard filter.

4.6.3 N-Body Effects

The acceleration of a satellite near the earth due to the

presence of a third body is given by Geyling and Westerman [1971, p.

113) as

0 r r2(4~.82)

where p and rp refer to the perturbing body, and r refers to

the satellite with motion referenced to the earth. When transformed

to orbital elements and averaged over one satellite orbit, the

results show a periodic effect in orbit inclination and a secular

change in the ascending node of

Aiave - - 2 r cos i° rad/orbit (4-83)

e p
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For GPS orbits, these rates due to the sun and moon are

sun -5 x 10 rad/orbit (4.84)

A = -1 X 10- rad/orbit (4.85)
moon

and after only one month (60 orbits), the cross-track position error

at the node is 24 km.

Note that Afave , to first order, depends only on orbit

inclination and radius; thus, each GPS satellite will experience the

same effect, i.e., the whole constellation will precess and the

results will not be observable from satellite-to-satellite tracking.

Therefore, lunar and solar gravity must be modeled in the onboard

propagation software. As for the planets, their effects are at

least 4 orders of magnitude below the sun's [Geyling and Westerman,

1971, p. 113]; thus, 6-month errors of less than 15 m would be seen.

4.7 Relative Navigation Accuracy

To predict the performance of a model when used in a

relative navigation filter, the consider analysis program is run in

a filter mode in which observations are assumed to be processed from

each visible satellite every 60 minutes. Model errors include earth

geopotential terms, as given in Table 3.3, and solar radiation

pressure, as shown in Table 4.2. This table also shows the

observation, satellite ephemeris and clock errors simulated.

When errors in model parameters, other satellite positions

1 A
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and clock biases are considered and observations processed, the

position error stays below 7 m for 60 days (Figure 4.11). However,

as shown In Figure 4.12, when errors due to a clock drift of

1012 see/see are included, the error grows to 2.391 km. Estimating

both bias and drift along with the vehicle state brings the maximum

error down to 40.8 m as depicted in Figure 4.13.

4.8 Consider Analysis Summary

The model suggested for the GPS autonomous navigation

algorithm includes lunar and solar gravity and the earth

geopotential through J2 and C,S 3/2 and requires that solar

radiation pressure and each GPS vehicle clock bias and drift be

estimated. Including these terms in the consider analysis, plus

errors described in Tables 3.2 and 4.1 for relevant terms, gives an

t overall one-sigma accuracy of 40.8 meters over 60 days.

7

C
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CHAPTER 5

GPS NAVIGATION FILTER

5.1 Introduction

The onboard navigation filter that each GPS vehicle uses

to determine its navigation state is a compromise between numerical

accuracy, size, complexity and speed. Since current microprocessors

do not have the word length or speed of mainframe processors, the

filter must be designed to fit into a limited storage and time

environment. As in the previous sections, it is assumed that each

visible GPS satellite is tracked every 36 seconds and that the

pseudo-range and integrated doppler observations are smoothed by a

local curve-fitting procedure to produce one pair of observations

per satellite each 60 minutes. A sequential filter then processes

up to 14 pairs of range and doppler measurements and updates the

navigation state each hour.

An alternate approach to the sequential filter is to

collect smoothed observations for several hours and process them via

a batch algorithm at the end of the observation span. This requires

the covariance matrix and state to be propagated over much longer

intervals, however, and would require more accuracy and

sophistication in the dynamic model. This approach is worthy of

study, but this analysis assumes a form of the extended Kalman

sequential filter (EKF) to minimize propagation intervals. Other

139
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studies have been performed on satellite navigation algorithms,

e.g., Tapley, et. al. [1981], and square root formulations of the

EKF have proven stable, efficient and accurate for autonomous

navigation using GPS signals. The results of Tapley, et al., are

directly applicable to the GPS autonomous navigation problem since

they studied estimation algorithms, dynamic models and numerical

integrators for onboard navigation of LANDSAT-D-type satellites.

The main differences are that GPS is higher (semi-major

axis - 26575 km vs. 7087 km) and that the onboard filter is actually

a local filter solving a part of a global problem. The local filter

aspect is addressed in Section 5.3.

5.2 Filter Model

The dynamic model selected for the GPS navigation filter

algorithm differs from the LANDSAT-D model in that the higher

altitude puts the satellite out of the atmospheric drag regime and

into the area where solar radiation pressure and luni-solar gravity

terms become significant. As noted in Section 4.6.3, lunar and

solar gravity effects are unobservable in satellite-to-satellite

tracking if the satellites are in the same orbits, and accurate

models for these effects must be included in the dynamic model.

Fortunately, lunar and solar ephemerides can be predicted

accurately, and their masses are known to high enough accuracy that

their gravitational effects can be modeled instead of estimated in
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the filter.

Solar radiation pressure, however, is not as well modeled,

and the satellite coefficient of reflectivity, n , and its rate,

n , must be estimated along with the satellite position, velocity,

clock bias and drift, as discussed in Chapter 4.

The state vector for' GPS #i is then

x2

- xr 3

V x4

Co x5(.)

CAf/f x6

, 7l

n x8

,x 9

5.2.1 Dynamic Equations

The dynamic model used to propagate the state by the

nonlinear vector differential equation

i(t) = F(X(t),t)

is

<I
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v

ae s s m a

CAM/

F(X(t),t) ( (5.2)
Cc

0

where

ae - gravitational acceleration of the earth

- acceleration due to solar radiation

- perturbing acceleration due to the sun

T= perturbing acceleration due to the moontm
and the stochastic forcing noises have the following statistics

= o(s)

E~~)()k= qZ6(t-r) (5.4)

where k denotes the 3 x 1 vector acceleration process noise,

a or the scalar clock frequency drift noise, Cc

The nonlinear state differential equations are linearized

about a nominal state vector to produce

wh t) r A(t) xet) (5.5)

where
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A(t) B X -It (5.6)

a; a- a- a; a-
a acs arl an

3 _a aa aa aa aa
ai a; acs an a

acr acr acr act acr

ar av acs an a;
ace ace ace ace ace

ar a an anI a a; 3; a; a;
whee acs an an

chr r is the clock rate, ce is the clock error and cs is

rthe clock state. For this application,

r("3 x3) I(3x3) 0(3x2) o(3xl) o(3x1)

A~) A21(3x3) 0(3x3) 0(3x2) A2 4(3xl) 0(3xl)

A~)- o(1x3) o(1x3) A 33( 1x2) 0 0

0(3x3) 0(3x3) 0(3x2) 0(3x1)

The entries of A are described in the following sections.

5.2.2 Geopotential Model

As discussed in Section 4.6.1, earth geopotential terms,

with the exception of J 2  and C,S 3/2 cause along-track secular

and periodic perturbations that are small during the one-hour

R%
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propagation interval and are observable in satellite-to-satellite

tracking. The effects of J2  are large and include both tangential

and normal excursions and are thus unobservable to the navigation

system. They must be included in the dynamic model, which becomes

LI xl/r 3 (I + )]

e ( x2/r (5.7)

/r3 I +

where

r- X2 +X2+X2 (5.8)

2
e 1.5 (I - 5 x2Ir 2) (5.9)

2 2 2

r

e1.5 J (3 - 5 x2/r 2 ) (5.10)
r2

J2- .001083 (5.11)

For the dynamic model given above,

alle a12e a13 e

A 21 e  a12e  a22e  a23e  (5.12)

a 1 3 e  a23e  a33e

where
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2
2 2)(1 2 3J2R 2(3-3x/r)(1 a) + 2 ( Ox /r2) (5.13)

a1e  r3 I r7 Xl21 3

a22e . (1-3x22/r 2)(1 + a )+ 2 e xx22l lox/r 2)  (5,14)a12  7 3e rT

r7

2

a22  -(3i 3x/r5)(1 + a) 32 Re x ( 1x2/r 2 ) (5.16)l x3/ r7- x~36 3

a2 -IL (1- 3x 2 /r2)(1 +') + J2  x2 ( - 1Ox2/r2  (5.17)22 ae " r3-2 r7  23

R2

a3  ~ (1 - 3x .Ir.'( + 2exf8- 1 /2r (5.18)
3e -r 3  3 r7 3

The acceleration due to C,S 3/2 is computed by rotating

the satellite position vector to the ECR coordinate, computing

satellite latitude () and longitude (X), and taking the gradient of

che 3/2 geopential term:

U (L)332 F r 32 (sin

[C3 2cos 2A + S32sin 2X] (5.19)

where C32  and S3 2  are the spherical harmonic coefficients and

P32 (sin *) is the Legendre Associated Function of degree 3 and

order 2 for the argument sin * can be computed recursivelyim ca becopue



; 11,6

from the equation

Ppm(sin o) - Pk-2,m + (2Z-1) cos * -,m-i (5.20)

where P,, - 0 if m > 2 . Thus, P32(sin €) is obtained from

P32 (sino) + cos@ (5.21)

P22(sin) - 3 cos 0 P1 1  (5.22)

where

P11(sino) - cos o . (5.23)

Thus,

P3 2 (sino) - 15 cos 3 0 (5.24)

Entries of A2 1  for C,S 3/2 are not computed since the

perturbation due to these terms are so much smaller than for J2

and would thus affect the orbit over relatively long prediction

times.

5.2.3 Solar Radiation Model

In this analysis, the same solar radiation model is used

in the onboard filter as is employed in UTOPIA. The acceleration

dup "o radiation pressure is given by McMillan [1973] as

-- 2 rvs --(2q

a. (i + ) m r3 (5.25)

vs
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where

Ps - solar radiation pressure on a black body

r. - sun's distance from earth

n - satellite surface reflectivity

A - satellite effective area

m - satellite mass

-vs sun-satellite radius vector - r - s

Y - shadow indicator

For a spherical earth and cylindrical shadow,

Y-0 if< 0 and (r2  r2 )1/2 < r (5.26)r e e
Y - 1 otherwise 

(5.27)

The partial derivative matrix is

a , , , ;1 2 s  a 1 3 3

A21  = a1 2  a2 2  a23 (5.28)

13 23s  a33s

where

-2 ,rl ,,AY ( -s) -' s ) 2
a 11 ssmr [ 3 ( 2] (5.29)

a12  -3p sr(1) ( 5  (5.30)
s r5vs

4;
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a13s . -3psr (1+r1)A rXs s)B )

a22 s - (1.n)f)- - 9 ( 2]s

2 3 s 3ss m 5(5.33)vs

(Y-Y Zs (.3)
a23 s  "Pr(1+r)- - L r5

a33s  Ps2(j.rT AY ' Z-s)-

A24  is then a vector given by

8

Arsv24 (5.325)

A2  s mr3  r

5.2.4f Lunar-Solar Gravity

The perturbations due to lunar and solar gravity are given

~by

17sv vs SA

where

r~ = vector fron earth to sun

-Y --- i
S (

III~~~ll2 -3p r I I I I Il I II A I •



jJ = GM

and

V . + (5.37)

mr

where

M = vector from earth to moonm

] r-
m - GMm

The vectors F s  and rm are computed by assuming Keplerian orbits

for the earth and moon and solving Kepler's equation for each time

point. The partial derivatives of Ts and P m can Then be

obtained by a straightforward differentiation of Eqs. (5.35) and

(5.36).

5.3 Decentralized Filtering

The problem of estimating the state vector of each of 18

AGPS satellites from satellite-to-satellite pseudo-range and doppler

information is a global estimation problem, since the measurement

errors dre a function of other satellite position errors as well as

ranging system errors. To solve this problem on a global scale

would require a "supervisor" system with knowledge of all spacecraft

and measurement errors. If, at the other extreme, the situation is

RX
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handled by 18 decentralized processors, each solving the local

estimation problem with no cognizance of the other spacecraft

errors, an unstable solution results. Any GPS position error

outside the range expected by the a priori measurement covariance,

R , would quickly lead to filter divergence in the other processors.

This situation is similar to that faced by the Joint

Tactical Information Dissemination System (JTIDS) in its aircraft

relative navigation mode as described by Kerr and Chin [19801.

Since the two problems are alike in that each vehicle's state is

independent of the others but measurements involve information

exchange among the members, it is possible to cast GPS autonomous

navigation as a relative navigation problem and apply known

techniques of decentralized filtering.

Applying the methods described by Kerr and Chin to the GPS

problem, the system state error is described by a linear

differential equation of dimension 18 ni x 1 , where ni is the

dimension of each spacecraft state

S4(t) - F(t) x(t) + w(t). (5.38)

This system can be expressed as the collection

S1-1, 2,...,18 of separate dynamic systems:

si : xi(t) - Fi(t) xi(t) + wi(t) (5.39)

having interconnected discrete measurements available to the ith

'i~
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satellite:

Yi(tk) - H(tk)X(tk) + vi(tk)

n i

where Mi(tk ) is the projection operator from n  to R , i.e.

" xi(tk) Mi(tk)X2 tk) (5.41)

and Li(tk) selects those components of X(tk) that appear in

3G(X(tkltk)/,Xi(tk) . Thus

Yi(tk) = H(tk)xi(tk) + Hi(tk)Li(tk)X(tk) + vi(tk) (5.42)

* and L( t"i(tk)XI(tk ) contains no component of xi(tk) directly.

It is assumed that wi(t) and vi(tk) are zero-mean white noise

processes that are uncorrelated with wj(t), vj(t) and x.(0) for

j~i

Looking at the specific example of GPS-GPS pseudo-range,

assume that vehicle I is tracking vehicles 1-3 at t = tk. The

measurement matrix, Hi for a satellite state vector of dimension

10, containing F, v, clock bias, clock drift, reflectivity and its

rate is
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(5.143)
xl xl1 x2i  x 21 x3i x 3

ip'p 1 p1  O00 1000
Pl Pl Pl

Xl- x1 x i - x2 x i - x3
X1- 1  22 ~2 ~ 3  23

1 2 i 2 22 22 3 0 0 0 1 0 0 0

x 1 3 xi 2 3 x i x33
P3  P3  P3

for

X, F-V cAt (5..44)

5.3.1 Decentralized Filter Algorithms

As discussed by Kerr and Chin, the Surely Locally Unbiased

(SLU) [Sanders, et al., 1973] and the Sequentially Partitioned

Algorithm (SPA) devised by Shah [1971] are stable solutions to the

7 relative navigation problem. While the SLU filter is unbiased, it

requires that the rank of H be less than the row dimension. This

is not satisfied for the pseudo-range observation (and for

integrated doppler), thus the SLU algorithm is not applicable.

According to Kerr and Chin, the SPA filter has been shown

to be asymptotically stable, but it is not analytically unbiased.

They state, however, that this potential problem can be handled

adequately and recommend the SPA as the algorithm for JTIDS

navigation processors. Biased solutions are, however, a potential

problem area in GPS navigation and must be investigated.
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5.3.2 Derivation of' the Sequentially Partitioned Algorithm

Following Kerr and Chin [1981] with appropriate

modifications for CPS, define the local system

xi(k+1J 0 *(k+1,k)x,(k) +wi(k) (5.4J5)

with observations

Yi(k) -H(k)x (k) +vi(k)

A 18
=Hi(k)xi(k) + Hi(k) I +i~~jk v1 (k). (5.46)

where

x(t k) *p nix 1 vector for p satellites with n states

each

x i(tk) n n1 x 1 state vector for satellite i

L -m x nj submatrix relating m observations fromij

satallite j to satellite i

H~k) -aG( (tkt)(.u)
2 - ( tk)

H = aG3x(tkbk 58ax~k)

aG((t k)tk)
H (k) (548

4tkj- xi (tk) I

At~
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Now, define the state estimation errors

e1 (k k) x.(k) - 21 (k) (5.50)

and

ei(klk-1) xi(k) - 7 (k) (5.51)

where

R (k) E[xi(k)ly(k)] (5.52)
and

-i (k) - 0 i(tk'tk+l) Ri(k- 1 ) .  (553)

Then

yi(k) = Hi(k)xi(k) + Hi(k) 8 Li.(k)7.(k) + v*(k) (5.54)

j--1

where

v (k) v1 (k) Hi(k) I L1 .i< Je.(kik-1) (5.55)
j=l
jil

Now, assuming

1. ij(k) is known for j4i, j=l, 2, .... 18

2. ej(klk), ej(klk-1) are Gaussian and white for

j=1,2,...,18, ji ,

e0

I 
.-.... ~.---- - ~-
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3. vi(k) is Gaussian white measurement noise

then the Kalman filter can be applied [Singh and Titli, 1978] to

provide

R (k) E [vi(k)v*T(k)] (5.56)

=R (k) H H(k) L()T()LT( k

j I

where

T(k) = E [ej(klk-1)e '(kik-1)]. (5.57)

The state error at tk+1 is updated by

Ri(k+1) = (1(k+1) + Ki(k+1) [ yi(k+1) - Hi(k 1)7i(k+1)

18
Hi(k-1) X L ij(k+1Y).-(k+)] (5.58)

where

Ki(k+1) T ,(k+l)HI(k+l) [H,(k+1Y-F,(k+l)H{(k+1)

+ R* (k+1)]- (5.59)

and the state error covariance is updated by Joseph's form

Pi(k+1) = [I-Ki(k+1)Hi(k+1)]Pi(k+1)[I-Ki(k+1)Hi(k+1)I
T

+ K(k+l)R* K T(k+1) (5.60)-Ji



156

in the extended filter where the state correction is added

to the state after each measurement update,

Xi(k+1) Y7(k+1) Ri(k+1) (5.61)

where

Ri(k+1) Ki(k+l)yi(k+1) (5.62)

Comparing the SPA to consider covariance analysis, it is

seen that, for no interconnection in the dynamic model, the SPA is a

consider filter in which errors in GPS vehicles' positions and

clocks are considered.

5.3.3 Sequential Processing of Pseudo-Range Observations

For the case of GPS i obtaining pseudo-range

observations from one satellite Wj) at a time in a sequential

receiver, assuming

xT A -f- iT r v At i
I Xii f

_( x 2x.- i - x - 2 .) ) 3
(k) 00-1000...PP P

0 (X 11 -x i  (x 2 j- x2 (x3 j- x3i )

•0 0. i _j 00 0-1 0 0 0.

5p p p
(5.63)
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with zeroes for all partials with respect to Xt * i or j

This vector is then separated into

H (k) i . 0 0 0 -1 0SP P P

p p 000-1 0

h h h, 02 03 0 h7 0 0 0 1 (5.64)

and

Hi(k) -[ -h -h -h3 0 0 0 -h7 0 0 0 ] (5.65)

The L matrix for this situation is

a L [01 for 9 j (5.66)

Lij 1 0(5.67)

0 10

Now, define

"[h I h2 h3 0 00 h7( 0 0 o] L1jPjLij[h I h2 h3 0 0 0 h7 0 00 T

-T

4b

( L L. H (k)m[ hi h .. . . . .0 0: h ] L L 1



I

158

+h h-S2 " 12 h h3P3 + h2 h3P2 3

+ hh P + ~hhp + h h P )(.
7 17 2h7P27 3h737 (5.68)

then

Ri(k)- Ri(k+l) + (5.69)

IL

t1
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5.3.4 Sequential Processing of Doppler Observations

When processing integrated doppler measurements in a

sequentially partitioned algorithm, the measurement matrix is

H (xljx l) -(x2j-x2 ) -(x3j-x3i) 0000 
00...

(x1 -x1 ) (x2 -x2 )(x 3 -x3 ]
i ,, L J j P I 0 0 0 0 - T[ 0 0 ... 0 Tp p pr

-( -X1Jx -(X -x) -(x3 -X00.
PX Pl P 0 0 0 0 0 0 0...

(X1 -x 1 ) (X2 -x2 ')(X3  3 0 0 0 0 -T 0 o... 0P P Pl

(5.70)

where T is the receiver time tag and t For the short

time interval, T = 1.5 sec , thus

and

i Hi(k )  - [(h (.[2 )-h11(,c1)) (h2(.r2 )-h 2(l )

(h3 ( 2)-h 3 (1 )) 0 0 0 0 h 8  0 0 o...(hl( l)-h ( 2 )

(h2(1)-h2(.2) (h3 (T1 )-h3(2))0 0 0 0 -h8 0 o...](5.72)

ell.~. .- - -
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where

ha 2 I" (5.73)
h8  ' 2  'l

As in the case with pseudo-range observationr, this vector

(for one observation) can be separated into

Hi(k) = [(hl(T-r )-hi(T1)) (h2(T2)-h2(t1))

h h 0 0 0 0 0h (5.74)h3k 2)-h3( ) o 8 o o 0.,

and

H(k) (-(h1( 2)-h1(Ti)) - (h2(k2)- h 2(k1))

-(h3 (T 2 )--h3 (T)) 0 0 0 0 -h 0 0 ] (5.75)

with

L [ ] j (5.76)
t=

L Lij I i01 0 5.77)

0roo

Now, define

N
H = H;(k) (5.78)

k~/
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and

Ah h ( ) - (t ) . (5.79)

Then

-hP +hP + AhP + h
1 11 . 2 22 3 33. 888

2(AhP + AhIAh PI3 + Ah Ah P23

+ Ahh 8 P18  Ah2h8P28  + Ah 3h 8P 3 8 ) (5.80)

and

R = (k 8 .(5.81)

Note that the transmission of data from satellite j now

requires

11 12 13 17 18

22 23 P27 P28
. (5.82)

P 33 P37 P38

P77 P88 I
5.4 Numerical Results

The Sequentially Partitioned Algorithm was included in a

computer program (GPSNAV) that solves for corrections to the state

I
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vector defined by Eq. (5.1) for each of the 18 GPS spacecraft. The

original program employed a U-D filter as described in Appendix B,

however, numerical instability in tht. propagation of the P matrix

on the Cyber computer led to the decision to use a standard EKF

formulation with Joseph's form of covarlance update and propagation

via the state transition matrix.

Each spacecraft receives range and doppler from all other

visible satellites each 60 minutes. It also receives the covarlance

information defined in Eq. (5.82) at the time of transmission from

each of the other vehicles. Range and doppler information was

generated from a UTOPIA model incorporating an 6 x 8 earth

geopotential, solar and lunar gravity, solar rddiation pressure and

clock bias and drift errors using the force models discussed in

~Chapter 4 with parameter and initial state errors as given in

Table 5.1.
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TABLE 5.1

UTOPIA-GPSNAV COMPARISON

Model UTOPIA GPSNAV

Geopotential Thru C,S 8/8 J C,S 3/2

Solar Radiation Eq. (5.25) Eq. (5.25)
conical shadow cylindrical shadow

Lunar-Solar JPL DE-96 Two body
Ephemeris

Model Error

~0
%2

2 3.4 x 10 -2%

C,S 3/2 3.4 x 10 - 7 %

Initial State Error

@r

v -- 0
o0

o0- 10 m
r

o__ .0 0 2 m / s
~v
I Initial State Values

.22 .22

11 0 0

o -- 10-5

0. -- 0-- _ n

cAt -- 3 x 10-5

0 cAf/f 10-3 3 x 10- 6

Range errors of lo = 2.0 m and doppler errors of lo = .001 m/s were
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added.

The model incorporated in the SPA filter is a reduced

order geopotential consisting of J2 and C and S 3/2 plus solar and

lunar gravity and solar radiation pressure. The filter estimates

all of the terms in Eq. (5.1) and has the capability to include

model noise (Q matrix) terms for acceleration and clock errors.

The program was run In a perfect clock mode in which clock

errors were neither added to the data nor estimated by the filter.

The results for satellite #1 (Fig. 5.1) show that the corrections to

r and the position variance stay below 5 m, while the observation

residuals are on the order of 10-15 m and that the solution appears

stable for the four-day run.

When clock errors are included in the data, however, the

results in Figure 5.2 show unstable results after about 80 hours.

This run includes no model noise for clock parameters. When a clock

drift noise term of 1012 m./s is included in the noise compensation

matrix (Fig. 5.3), the solution is stable for approximately 17 days

with corrections on the order of 5 m and observation residuals of

10 m being seen.

When a four-day filter-determined ephemeris is compared

with the UTOPIA ephemeris, it is seen that the in-plane components

agree to within 40 m (Figs. 5.4 and 5.5) with a small secular trend

(2 m/day) apparent in the along-track direction. Out-of-plane

errors, however, grow secularly at approximately 20 m/day. This
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difference may be due to a combination of integrator/model

differences between UTOPIA and errors, an inability of the filter to

determine adequately the cross-track component of the vehicle's

clock error, or biasing of the filter algorithm. When clock errors

are removed from the data and the filters assume perfect clocks, the

error growth is reduced to 11 m/day (Fig. 5.6), thus almost 50

percent of the error is due to the clocks. Since neither of the

observable components (radial and tangential) show significant

biases, this very limited test indicates that the problem discussed

in Section 5.3.1 may not be significant.

If this secular trend continues, the total cross-track

error would grow to 1.2 km after 60 days, but only a small

percentage of the error would appear in the user-GPS line of sight.

However, the importance of this error growth is not its magnitude

but the fact that any onboard orbit determination scheme based upon

satellite-to-satellite tracking will not observe similar planar

motion. To solve this problem, either the model must be tuned to

the specific application through much more extensive analysis and

testing, or the naviZation system must be augmented by a GPS

transmitter in a different altitude orbit or on the surface of the

earth or moon. A transmitter on the earth would solve this problem,

plus it would allow the navigation algorithm to determine the

earth-satellite orientation.



171

0

6
iI

C

L ~o

U- O

0

m fJ
: I

liii'

0 .0 2.0 3.00

0.0 1 4.0

TiME CORTS)
Figure 5.6. Normal Position Difference Between Estimator

and UTOPIA; No Clock Errors in Data

i 
'  

L 4 "x ' ' ' ____ .. ....

iI



CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The conclusions drawn from the discussion in the previous

sections can be summarized as follows.

1. When compared with the space sextant, current design solid-

state matrix star sensors coupled with current horizon sensors

yield a factor of 16 worse navigation accuracy.

2. If matrix sensors can be used to measure the earth horizon by

star refraction to a precision comparable to the star position

measurement, they can provide better navigation accuracies

than the space sextant. A critical factor in this scheme is

the fact that, for a constant tangent height error, apparent

thorizon sensor error quickly drops to levels near or below the

original actual sensor error a, altitude increases. A key

factor limiting refraction determination of earth horizon is

the accuracy to which atmospheric density can be predicted.

3. Since matrix sensors can be derated to match less stringent

program requirements, they can be used to provide angular

information with a precision varying from >20 arcsec to

<1 arcsec with corresponding navigation accuracy.
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4 4. The space sextan. has a greater ability to recover from loss

of attitude control than do the fixeu sensors.

5. Atmospheric refraction uncertainties contribute approximately

1500 m to the error in the determination of ray tangency

altitude.

6. For navigation requirements of 50 m or less, the GPS receiver

is recommended. It is possible that a SHAD and/or a matrix

sensor may produce real accuracies of <50 m, but an analysis

of all relevant error sources is required to verify this

conjecture.

7. An onboard navigation system for GPS based upon sateilite-to-

satellite data transmission is feasible. However, this system

is inherently unable to determine similar motion of all

orbital planes and the earth. While earth angular position

can be predicted to about 50 ms over six months, this error,

in addition to planar motion, would cause errors normal to the

satellite plane to reach approximately 1.3 km.

8. The Sequentially Partitioned Algorithm provides a stable

solution for each satellite's state vector, including clock

parameters, as long as model noise compensation is used.

Preliminary results do not show a tendency toward biasing.

- - 4
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6.2 Recommendations

These recommendations are made following the previous

study.

1. Development of the matrix sensor technology should be

continued.

2. Investigation of the feasibility of performing improved

horizon determination from star refraction measurements should

parallel sensor development. Current and future refraction

data should be used to improve atmospheric density modeling.

This is critical to the success of navigation by matrix

sensors.

3. Further refinements should be made in the analysis of the

matrix sensor measurement to include all error sources

affecting the measurement and its reduction to a navigation

measurement.

4. Further studies of GPS cross-link navigation should be

conducted to include:

a. A more detailed evaluation of filter performance with

respect to model and clock parameters.

b. Evaluation of navigation performance when augmented by

an additional transmitter in space, on earth and on the

I

_ _ _ _ _ / _
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moon.

c. The feasibility of including navigation information in

the L3 cross-link.

d. U-D filter performance when used with the SPA algorithm.

'1

A
m n~



APPENDIX A

CONVERSION OF BATCH PARTIAL DERIVATIVES TO SEQUENTIAL

The University of Texas Orbit Processor (UTOPIA) produces

precise estimates of position and velocity for spacecraft using

several types of observations, including laser range and altimeter

height. The basic batch and sequential algorithms are described by

McMillan [1973] and Wilson [1976].

A relatively recent addition to UTOPIA is the capability

Pof producing partials of the spacecraft state at observation times

L(inertial F(ti) and V(ti)) with respect to the state and several

model parameters at some user-defined epoch. These model parameters

include p. , The spherical expansion coefficients (Clm, Slm)'

atmospheric drag, solar radiation pressure and unknown spacecraft

accelerations in the RTN coordinate system. The purpose of the

partials is to allow the program to interface with the JPL consider

covariance analysis program COVAN to produce a consider covariance

matrix at epoch (to) after processing simulated observations at

ti , i-1,...,k. UTOPIA does not simulate satellite-to-satellite

range or doppler observations nor does it produce a sequential form

of the 0 and p matrices required for long-term sequential

analysis of the GPS autonomous navigation problem.

It is possible, however, to convert the batch or epoch

forms of these matrices to a sequential form by the following
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algorithm:

A.1 Conversion from 0(tj+ 1,to) to O(t +1 ,t 3 )

Given the sequences 0(tot o ), o(tlto)l

2,to) ... (tj+1,to) and gi(topto), (t11to), (t2to)...1P(tj+1,to),
we desire the sequences €(tot o )'  0(t1lto), O(t2,t1)... (tj+1ttj)
and *(to,to), (t ,t0 ), '(t2,t1)... (tj+l1 tj). Suppose a state

vector & is composed of variables X and parameters Z , then

ax(t ) FO(t i ' t j )  .
(A.t1)

ax(t
i )

I L t) az(tj) *

1; Note that

ax(t 0J ax(t o)O (t ~J) 0

ax(to) ax (tj)

so, for i = J+I, the sequential form of * is

,o t+1,tj) - O(tj+ 1 , t o ) O(to't j )

" (tj+1'to) 0-1to)" (A.3)

This conversion of 0 from epoeh to sequential requires the

inversion of a 6 x 6 matrix at each step. This can be avoided when
the spacecraft force is conservative, and thus only a function of

1~l i ,n,-

I ,, ... .I[ I .. . ...... . .. ... . ....
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position, by using the symplectic property of the A matrix.

Recalling that

t A(t)O(t,to)

where (see Chapter 2)

A(t) DF(xt) (2.3)
ax 1x*

If F is defined as in Eq. (2.3) then the A matrix is of the form

" I (A.5)A21  A22  a F

where Aij are 3 x 3 submatrices of A(t) . If the perturbation,

and hence the total force, is independent of velocity, Eq. (A.5)

reduces to

A(t) 0 L 11(.6

L xl

Define F = x2 , then

x3

tU
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31ix ap 3lijxx aP1  3-ix x3
+ ~_ 1 1 12+- +LP

3 x 5 ax r ax3r r r a 2  r

BF 31x 1x2  P2 -V 3vx2 +a2 3)jx2x3 +P2

3j x3  3

5 +ax 3 5 + x 5 D
r r 2 r r 3

and, if P is a conservative rorce, tlen

v x . 0 (,6.8)

where

a + a k.
drx T T 2 37

For Eq. (A.8) to hold,

aP1  ai2
F 2 gx1

aP1  ap 3  (A.9)

i The symplectic property of A~t) then states that t1 A(t)

~can be expressed as

i .

3 1
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A(t) =FAll A12 ] (A.10)
A A
A21  A2 2

with

A AT

A12 -AT2  (A.11)

A2 1  A21

then

O(t'to) F11 012 (, 12)

021 022

L
and

0(tOt) -1 (t'to) F 022 -012 (A.13)

L021 * j
As discussed in Goldstein [1980], the state transition matrix for a

conservaitive system is a canonical transformation in time and,

therefore, satisfies the symplectic condition. The use of this

property can then replace the matrix inversion in Eq. (A.3) with a

simple rearranging via Eq. (A.13). If the perturbing force is not



cosraie asi h-aeo topercdate h ~'o

conervToe asmpun the cseuof atm oric draoten the followin

relationships for constant z

X(t1) - *(t1,to)x(t0 ) + 4(tjto)z0  (A.14)

X~ )-0t,,)~ ,)+ 4)(t2-t0)zo (A.15)

and 2)- (t21t1)x(tI) + 4(t2,tl)zo (A.16)

adsubstitute Eq. (A.14~) fo:- x(tj) in Eq. (A.10)

2) 0(t2 ttjI t1 -to)x(t0 ) 4.0t+l'Pt"oz

O (t2,t0)x(t0 ) 0(t29tl)4)(tlto)zo 4)(t 2 tl)z (A.17)

Subtract Eq. (A.15)

0 ( 2,t1 )qp(tj,to)z 0, + 'P(t2,tl)z, - i(t2,to)zo (A.18)

then, the equation for 44 2 t) is

-~*(t 2,t1 ) - *t 2.to) - 0(t,2-tI)4(t 1,t0,) (A.19)

or, in genieral,
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* (tj *t+i'to) - (tj+ I tj Mtj to) (A. 20)

Eqs. (A.3) and (A.20) are used in conjunction with a

UTOPIA run to produce a file containing the user spacecraft state,

*and p matrices for each time step desired during the period of

interest.

S
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APPENDIX B

THE U-D FILTER

The GPS onboard navigation filter is required to perform

high-precision calculations even though it is operating on a

microprocessor. Since typical spaceborne processors use small word

lengths (16 or 32 bits), techniques must be used to improve the

numerical pre-ision and stability of the filter. Several techniques

have been devised, all using some forn of the square root of the

covariance. Maybeck [1979] and Tapley, et al. [1980] provide

descriptions of the various algorithms, and the analysis by Taply,

et al., shows that the U-D algorithm by Bierman [1977] had the

lowest total numerical operations, while potentially maintaining

stability in short word length machines. The U-D algorithm is

recommended for GPS navigation applications, so it was tested here

in the autonomous navigation role. The filter described in this

report includes model noise compensation (Q matrix) for the reasons

discussed in Section 4.2. While consider covariance techniques are

4 appropriate for pre-launch studies, the added complexity and core

storage required by the consider parameters make it inefficient for

real-time application.

As described by Tapley and Peters [1980], the covariance

matrix P(tk) can be factored into

)k
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Pk Uk Dk Uk  (B.1)

where U is an upper triangular unitary matrix (with ones on the

diagonal) and D is a diagonal matrix. It is well known that this

factorization exists and is unique, even though the matrices U and

D are n6t unique [Maybeck, 1979, p. 392].

B.1 U-D Propagation via the State Transition Matrix

The matrix Pk is then propagated to time tk+ I  by the

state transition method described in Section 4.3. If the state

noise matrix, Q(i) , is diagonal and is expressed in the state

vector space, then B(T) - I and

tk+l

Pk+1 ' 0(tk+ltk)pk T(tk+ltk ) + f k (tk+lT)Q(t)OT (tk+l-,T)dT
tk

0(tk 1,tk)UkDUk@ (tk+1 tkJ)

tk CtiQtT(tkitd

+ ft  (tk+1,T)Q(}T)Otk+1, )dT (B.2)

tk

where

;(t,tk - A(t) (ttk ,  ¢ttk- (B3)

and

A(t) WF(X(tt) (B.4)
ax(t) 1x*(t)
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To propagate U and D , form the augmented matrices

Wk (13.5)
k+1  (tk+ltk)Uk I Ck+l

and

FDk 01
Dk 0 Qk/At (B.6)

where

tk+1

Ck+1 "f *(tk+l,")dr (B.7)

tk

At - tk 1 - t (B.8)

kI t
Now Wk+1 will not be upper triangular, but Uk+ I and Dk+1 can

k+1~be obtained by a modified Gram-Schmidt orthogonalization on Wk+l

weighted by Kk such that

-T--U D W. =B.D9)
k+1 Uk+lk+l k+1 k+1 k k+1

Note that this method requires the integration of the

n x n ; equation and the n x n Ck+ I  integral, plus the

triangularization of k+1

B.2 U-D Propagation via U and

To improve the U-D propagation efficiency, Tapley and

Peters propose integrating the U-D form of the matrix Riccati

4

prIseitgrtn
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equation

(t) - A )(t t) + (tAT(t) Q(t) . (B.:O)

If

and

Q - Q/2 
(B.12)

then

. .

~T ~T
P -U D U D +U D U (B.13)

and

1-5 U + jDt = A Tr + A (B. 14)

Rearranging,

(U D A T U) UT

T

+ - - uu .T AT) = 0 . (B.15)

Define

E t- U + 7- D AU ) UT (B.16)

IiA
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then E(t) + ET(t) = 0 and Eq. (B.15) can be simplified to

PTi D Ufl A U 1) UT +E(t) ; E(t) (B.17)
2

The elements of E(t) can be specified to maintain the triangular

form of U during the integration by defining the matrices:

T A U D (B.18)

M E + - T (B.19)

Then

M T Q + E (B.20)

For U and U to be upper triangular, there are

n(n-1)/2 unknowns in the skew symmetric matrix E. The products

UD and U D are upper triangular creating n(n+1)/2 unknowns.

The whole system (Eq. (B.20) then has n(7 1) + nlnXlJ - n x n

unknowns, the same as P , which can be uniquely determined. The

elements of Eq. (B.20) are

m1 1  mi2 1  . n mnl [12 0

m22 m n2 u13

l,n_ . n,n- 0

ti t2  * u iItn -2n nn Uln " n-l,nl

£

-- - . / . -, *AT



qll -e2 -e
21 n,i

q 22

e l,nI  •-e n,n_1

e1n e2n 'nn

and the solution to this equation for M is obtained noting that

n n(B.21)m nn "qnn

tnl,n  m Un . nlm (B.22)i mnn 1- ,n en~ -

mn,n1 -enn 1 (B.23)

and that Equations (B.22) and (B.23) can be solved for the two

unknowns Mn,n I  and en,n I. This process then proceeds

backwards up through the M matrix until M and E have been

determined:

U and D are then obtained from

D- 2 (B.24)

or

n n n Ulkdkj
mj + tij -k Cl ik jkj 2

ii

i4-,
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+ j (B.25)

J -, .... ,n)(i -,.. j

For i J, ui " 1 , so uij 0 and Eq. (B.24) becomes

:1i " 21mii + t 1 (i - 1,...,n) (B.26)

which provides the solution for the diagonal matrix D

Since U is upper triangular, terms for which i > j are

zero, thus the only case left is for i < J , which gives

ij " tj - uij / ji (B.27)

i,...,J-1) (j 2,....n)

Eqs. (B.26) and (B.27) are then used in the derivative subroutine of

a numerical integrator to provide U(t) and "(t) . Note that

UDUT is never formed in the propagation algorithm.

B.3 U-D Measurement Update

The Kalman measurement update to the covariance matrix for

a scalar observation at t - tk+ I  is

P -I - KH)T F - KHT (B.28)

__ _ _ _ _ _ _ _ _4,
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where

K- " HT(H P HT - (B.29)

and

aG (x tk,),tk ,_)
.. I.. k21 x*(tk+1) (B. 30)

P can be factored [Maybeck, 1979] as

UDUT Tr U9UUT - (I1/a) (T UT H1T H UD17

U [9 - 1,')CUT HT) (-U T )T] UTr. V.31)

where

a HpHT + R (B.32)

Now, define the vectors

f UT HT (B.33)

vm - f. 5 THT (B.34)

and Eq. (B.31) becomes

U UDUT U U [9 - (,/a) V vT]T uT (B.35)

where v v and S - (i/a) v v are now symmetric n x n matrices.

Applying the decomposition algorithm to D- (1/0) v VT yields a
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unit upper triangular matrix, U+ , and a diagonal matrix, D+

Then

UDUT (U U')D (U U+)T (B.36)

and

U * u+ (B.37

D- D" (B.38)

The factor 1/ai still contains the product HPHT ; however, by

calculating U and D in a recursive manner, the explicit

formation of P is avoided. The method also gives the Kalman gain,

K , in a recursive form. The Kalman state update algorithm then

proceeds as follows:

Set a0  R (B.39)

Compute

f hi + h (B.4o)

Vi -ii fi (B.41)

= i "i-1 + f V (B. 42

d. d -/ (B.43)

bi V (B.44)

:ii
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Pi = (B.45)

UJ - Ui + bj P1  (j-I,2,...,i-1) (B.46)

Sbj+ Uj1 Vi  (j=1,2,....i-1) (B.47)

The new vector B, is then used to compute the Kalman gain

K =BI n  (B.48)

and

) ) + K - (t (B.49)

Note that this formulation still computes the components of the

matrix P - UDUT when it is recursively solving for fi Vi and

ai * This is true of all square root filters, even though the

product is usually hidden in the recursion relations.

I

*1

4
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